1. 船舶天文钟和母钟电波钟表 确保时间准确性的计时工具 一种通过接受国家授时中心的无线信号以确保时间准确性的计时工具。 基本信息 中文名 电波钟表 外文名 Radio clock 所属分类 机械表 工作原理 电波钟表工作原理 电波钟表的工作原理:首先,由标准时间授时中心将标准时间信号进行编码,利用低频(20KHz~80KHz)载波方式将时间信号以无线电长波发播出去。电波钟表通过内置微型无线电接收系统接收该低频无线电时码信号,由专用集成芯片进行时码信号调解,再由计时装置内设的控制机构自动调节电波钟表的计时。通过这样一个技术过程,使得所有接收该标准时间信号的电波钟表(或其他计时装置)都与标准时间授时中心的标准时间保持高度同步,进而全部电波钟表显示严格一致的时间。 所属分类 电波钟表因为其计时技术的突破性,成为机械表、石英表后的第三代计时产品。严格意义上讲他应该属于通讯电子类产品. 功能特点 电波钟表是继石英电子钟表之后的新一代的高科技产品,它的出现开拓了时间计量的新里程,使精密时间的简便自动接收、并进入寻常百姓家成为可能,从而将对世界经济的发展产生重大的影响。 电波钟表是在石英电子钟表内增加了接收无线电长波信号、数据处理、自动校正的功能结构,这样就能接收地面发射站以长波发送的标准时间信号,每只电波钟表在接收到这一精确的时码后,经数据处理器处理,即可自动校正石英电子钟表的走时误差,使每只电波钟的走时都受统一精确的时码控制,从而实现了所有电波钟高精度的计量时间和显示时间的一致性。 发展沿革 国外 日本发射台覆盖范围 五十年代末,德国就在法兰克福建台,发射频率为77.5千赫的长波时间信号。第一只作为商业用途的电波钟诞生于1986年。除法兰克福外,德国和法国又各建一个长波发射台,发播信号已可覆盖全欧洲,这为整个欧洲提高时间计量精度和时间显示的统一创造了先决条件。德国荣汉斯公司生产的电波钟已经上市并畅销欧洲市场,电波钟在欧洲钟表市场占有率已达30%。一些发达国家如美国、英国、法国、瑞士和日本等已先后建立了自己的发射台,而美国和日本最近更将发射台的发射功率提高了几倍。泰国、马来西亚也在酝酿建设长波信号发播台。 国内 国家授时中心(陕西天文台)和国内外有关企业合作,致力推动中国电波钟的发展。1994年完成可行性论证;1999年建成每天可工作5小时的试验台(100KW全固态发射机,发射频率68.5千赫);2000年完成试播和部分外场测试,证明设计正确;同年,接收芯片研制成功,电波钟样机问世。 国家授时中心低频时码授时台2002年的4月1日正式发播,目前每天发播时间为六个半小时,早上8:00—12:30,晚上22:15—0:15。 20世纪 一九八一年 1981年7月:《钟表》杂志第七期刊登了“钟表工业的第三次技术革命与英霍夫标准时间信号接收钟”译文,比较全面介绍了瑞士英霍夫标准时间信号接收钟的工作原理和产品结构。我国钟表产业第一次通过正式媒体了解到了世界电波钟表的发展情况。 一九九0年 1990年9月:《钟表》杂志第十一期刊登了“使用733机心的RC2荣汉斯无线电钟”译文,向我国读者介绍了联邦德国(当时的西德)长波发射台信号传输原理和德国荣汉斯公司开发生产的RC2型电波钟产品。我国钟表业由此了解到了民用大批量生产电波钟表时代的到来。 一九九六年 1996年6月:中国轻工总会给中国轻工总会钟表研究所(即现中国轻工业研究所)下达了“电波钟技术的跟踪研究”科研项目,对世界电波钟表发展历史、现状和未来方向进行系统分析研究,提出发展我国电波钟表产业的建议。 一九九八年 1998年3月:中国钟表协会、香港钟表厂商会、台湾区钟表同业公会在珠海联合召开了电波钟表工作会议,分别介绍了各自发展电波钟表的有关情况并针对发射台的建立、信号制式等内容进行了探讨。会议还决定由四会代表组成了电波钟表开发小组,香港表厂商会首席顾问锦永博士担任组长。 1998年8月:西安高华电器实业有限公司开始进行电波钟表项目调研。 一九九九年 1999年2月:中国钟表协会理事长、香港钟表业总会会长、香港表厂商会会长、台湾区钟表同业公会理事长共同联名向国务院上报了“关于亟待国家发射电波钟表信号报告”。吴邦国副总理转批信息产业部研究处理。 1999年9月14日:在西安中西部经贸洽谈会上举行了“低频时码授时系统及电波钟表”新闻发布会,西安高新区管委会领导、中科院西安分院领导、中国科学院陕西天文台(现国家授时中心)负责人、西安高华电器实业有限公司负责人出席了新闻发布会。 1999年12月23日:在西安高新区举行了为“中华世纪坛”标准时钟捐赠仪式:中华世纪坛千年庆典活动组委会会长、中国首位驻美大使柴泽民代表组委会接收。陕西省委常委栗战书、西安市委书记崔林涛、西安高新区管委会主任张龙虎等参加了捐赠仪式。这座钟被安置在北京市中华世纪坛主坛上。并在12月31日的庆祝新千年活动中,江泽民主席按照世纪坛上置放的由高华电气实业有限公司和陕西天文台共同捐赠的标准时钟的指示时间,准时敲响了世纪钟。 21世纪 二000年 2000年4月3日:中国科学院陕西天文台(现国家授时中心)50kW低频时码实验台开始BPC低频时码信号的试发播。 二00一年 2001年12月:西安高华公司开发的GTCO1D01中国码电波钟获国家重点新产品证书。 二00二年 2002年2月:由西安高华公司开发的中国码标准时间发生器、中国码PC标准时间发生器、GPS数字单面挂钟、GPS子母钟等四项成果通过了西安市科学技术委员会科技成果鉴定,填补了国内空白。 2002年3月1日:国家授时中心正式开始了每天6.5小时,分为两个时段的低频时码信号发播服务。这使我国成为了继德国、英国、日本、美国之后,世界上第五个发射长播授时信号用于电波钟服务的国家。 2002年4月:在深圳钟表展览会期间,西安高华公司举行了“中国电波钟表面市暨招商新闻发布会”,首次正式批量推出了我国自行设计的中国码电波钟产品,结束了我国钟表业没有自己本国码电波钟的历史。 2002年7月:西安高华公司电波计时器获科学技术部火炬高技术产业开发中心颁发的国家级火炬计划项目证书。 2002年10月:在北京国际钟表展览会期间,国家授时中心、西按高华公司、日本卡西欧公司联合举行了“中国电波钟表新闻发布会”,首次推出了我国自行设计的中国码电波手表。 二00三年 2003年9月5日:西安高华公司在成都举行中国制式电波表上市新闻发布会,正式开始了中国制式电波表产品市场的推进,掀开了我国消费者使用本国码电波表的历史篇章。 二00四年 2004年9月:专业从事各国码电波钟表技术研究、产品制造与市场开发的西按高华科技有限公司成立。 2004年9月:由中国轻工业钟表研究所、西安高华科技有限公司联合发起的“电波钟表发展促进会”在北京召开了首次会议,宣告了促进会的成立。促进会的秘书处设置在了西安中国轻工业钟表研究所内。 二00五年 2005年4月:高华科技公司自行研发、生产的电波钟机心上市。 二00六年 2006年10月13日:由西安高华科技有限公司、国家授时中心合作建立的100kW中国商丘低频码信号发播台破土动工。 二00七年 2007年4月29日:国家授时商丘低频时码信号发播台竣工并试发播,中国码低频时码信号比较好的覆盖了我国大陆绝大多数人口和地区和香港、澳门、台湾地区以及朝鲜、韩国、日本、东南亚等地。商丘台的成功建设奠定了我国电波钟表事业全面发展的基石,是我国电波钟表事业发展又一划时代的里程碑。 2007年12月26-27日:国家授时中心、西安高华科技有限公司在河南商丘召开了“中科院国家授时中心商丘低频时码发播台工程验收会”,到会专家一致认定商丘发播台的各项运行指标符合合同设计要求;国家授时中心通过半年多在全国各地的实际测试,信号质量和强度令人满意,同意接收商丘发播台。 商丘发播台建设工程的成功验收标志着商丘发播台已从建设阶段转向发播阶段,商丘台正式纳入到了国家授时中心的发播体系。授时中心从08年起正式开始BPC码的试发播,每日发播时间不少于16小时,初定发播时间:9:00—17:00,21:00—5:00。 二00八年 2008年7月3日:在中国(深圳)钟表高峰论坛,江山公司率先推出世界第1台自动接收国家授时中心电波信号的数码信息历,引起全球计时行业及专家们的普遍关注,正式吹响了推广电波计时产品应用的号角。 二00九年 2009年7月2日:江山公司向全行业发布第二代电波计时的双时间显示数码信息历,标志着电波计时技术进入全面发展的新时代,为统一中国标准时间同步奠定了坚实的基础。 …… 2. 船舶天文钟和母钟的区别1、船长 船长是船舶领导人,船长对船东(船公司)负责,是船舶安全生产、航行指挥、行政管理、技术业务和涉外工作的负责人。 船长负责审批大副编制的货物配载计划,严格执行乘员定额和载重线规定,不得超载。在装卸危险品、重大件或贵重物品时,船长应亲自监督;负责审批各部门负责人制定的运输生产和维修保养方面的航次工作计划。 2、水手长 水手长在大副领导下,组织领导木匠和水手开展工作;负责编制水手航行、停泊及了望轮值表;按大副指示安排水手进行船体和甲板部设备的维修保养、起落吊杆、开关舱、绑扎货物、清舱洗舱以及装卸和靠离泊的准备工作等。 3、大副 大副是船长的主要助手,是甲板部的负责人。在船长、政委的领导下,主持甲板部的日常工作。除航行值班外,主管货物的配载、装卸、交接和运输管理以及甲板部的维修保养工作。 4、二副 二副在船长、大副的领导下履行航行和停泊所规定的值班职责,并主管驾驶台设备,包括各种无线电航海仪器、气象仪器、操舵仪、天文钟和船钟、罗经、国旗、号旗、号灯、号型、海图及其他航海图书资料。 5、三副 三副在船长、大副的领导下履行航行和停泊所规定的值班职责,并主管救生、消防设备。开航前,三副应编妥船舶应变部署表和船员应变卡,并经大副审核,船长和政委批准后公布执行。 进出港口、靠离移泊和抛起锚时,三副在驾驶台协助了望,传达和执行船长命令,并操纵车钟.记录车钟和船舶的主要动态和情况。 3. 船用子母钟是的作用船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。 2 GPS与雷达的定位与导航功能 2.1 定位功能 船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。 GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。 2.2 导航功能 30m左右的中型引航船。考虑到天津港冬季多大风, 锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。 无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。 3.3 对速度和操纵性能的要求 引航船在速度上不能低于16kn。 高速艇一般不能低于20kn。 从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。 3.4 要配置先进的雷达及通信设备 另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。 以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。 普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。 GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。 3 GPS的避碰功能 船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状况设置报警范围。在航行中,驾驶员可以随时检查这些物标相对于本船的距离和方位。一旦船舶进入所设定的报警范围的边界,GPS导航仪立即发出报警,驾驶员作出避让措施。 4 GPS辅助雷达定位 雷达定位的难点是正确识别物标,对于不大熟悉雷达观测的驾驶员更是如此。若用雷达观测几个比较接近的非独立物标,由于物标回波图像边缘扩大、失真等原因,这些物标的回波图像难以清楚分开,因而观测雷达图像找不出与海图所对应的物标,或把一物标回波图像错认为另一物标的回波图像,获得错误的雷达船位或造成不能允许的船位误差。又由于在海图上查找雷达回波反射点要耽误时间,因而定位是不连续、不实时的,获取船位的时间滞后于实测船位的时间。滞后时间的大、小与观测者对雷达观测的熟练程度有关。 普通的GPS导航仪,除了直接存贮任一位置的经、纬度以外,还可输入当前位置到达雷达测量位置的距离、方位,计算并显示物标的所在位置的经、纬度。若把雷达测定的物标的距离、方位数据迅速输入GPS导航仪,根据它显示的经、纬度数据,可迅速在海图上找到对应的物标,由此作出雷达船位。用此方法取得的雷达船位比用常规法作得的船位准确、可靠,避免因识别反射物标错误而引起雷达船位错误或偏差,标绘所用的时间也可明显缩短。如果将雷达测定的距离和方位数据通过接口和控制装置输入GPS导航仪,导航仪就不需人工干预直接显示相应物标所在位置的经、纬度。 5 锚位监视功能 在船舶锚泊时,船用雷达可通过测定陆标的方位和距离监视本船的锚位偏离状况,也可通过测定到达他船的方位和距离监视他船的漂移状况,一旦发现本船和他船走锚,便可采取相应的措施避免发生事故。GPS的锚位监视是以锚位点为中心,输入的设定距离为半径,一旦天线所在位置超出此范围,即被认为走锚而发出报警。监控半径大、小的选择要根据GPS导航仪的定位精度、周围环境及船舶状况而定。由于GPS具有较高的定位精度,可以减小设置监控半径,提高监控灵敏度。若采用DGPS可进一步减小监控半径,提高监控灵敏度。通常,GPS导航仪的最小设置监控半径为0.1n mile。 虽然GPS不能监视他船的锚移状况,但对本船的锚移监视具有不需通过测定物标定位、监视灵敏度高、快速实时等优点。GPS与雷达相结合的锚位监控手段,对防止大风造成的损失可起到很大的作用。 6 DGPS测定船用雷达测向、测距误差 7 GPS与雷达配合应用需注意的问题 4. 船舶天文钟怎么校对以天钟法与海钟法的航向测量距离,确立经度值。形成原始的经纬度坐标测量法,成为近代船舶远洋不可或缺的仪器! 以上天钟法与海钟法一般可能当做是西方“发明”的,实际是中国古代天文确定四个方位延伸出来的,南北子午线即是经度,中国古代已经将经纬度命名了,“凡地东西为纬,南北为经。——《大戴礼记·易本命》”,中国人怎么可能不知道经纬度呢?! 现代的经纬度概念就是出自中国,汉字命名已经确定了这一点了。 5. 船用天文钟对时方法现在国际上通用的是 1节=1海里/小时,1海里=1.852公里。1节也就是1.852公里/小时。 [节]:为轮船航行速度的单位,后来,也用於风及洋流的速度。 航海是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。 在从前是一种冒险行为,因为人类的地理知识有限,彼岸是不可知的世界。 【基本简介】 航海是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。 在从前是一种冒险行为,因为人类的地理知识有限,彼岸是不可知的世界。 人类在新石器时代晚期就已有航海活动。当时中国大陆制造的一些物品在台湾岛、大洋洲,以至厄瓜多尔等地均有发现。公元前4世纪希腊航海家皮忒阿斯就驾驶舟船从今马赛出发,由海上到达易北河口,成为西方最早的海上远航。公元前 490年,在波斯与希腊的海战中,希腊就曾以上百英尺长的战舰参战。中国汉代已远航至印度,把当时罗马帝国与中国联系起来。唐代为扩大海外贸易,开辟了海上丝绸之路,船舶远航到亚丁湾附近。在当时的科学技术条件下,航海是靠山形水势及地物为导航标志,属地文航海;而以星辰日月为引航标志的,则属天文航海技术之一种。指南针是中国历史上的一大发明,宋代将其应用到航海上,解决了海上航行的定向,也开创了仪器导航的先例。现代船上使用的磁罗经,是12世纪船用磁罗经传入欧洲后,由英国人开尔文改进了的海军型磁罗经。助航设施灯塔很早就已使用。公元前280年在埃及亚历山大港建造了高60多米的灯塔。1732年英国在泰晤士河口设置了灯塔。1767年在美洲特拉华设立了浮标。 公元15世纪是东西方航海事业大发展时期。1405~1433年,中国航海家郑和率船队七下西洋,历经30多个国家和地区,远航至非洲东岸的现索马里和肯尼亚一带,成为中国航海史上的创举。1420年葡萄牙创办了航海学校;船长迪亚士在1487年航海到非洲最南端,命名该地为好望角;1497年伽马率船队从里斯本出发绕好望角到印度。此后葡萄牙人又到达中国、日本。1492年10月意大利航海家哥伦布发现了美洲大陆。1499~1500年,意大利航海家亚美利哥2次登上美洲大陆考察,证实这片陆地是一片新发现的陆地,而不是哥伦布当年认为的印度岛屿,故命名新大陆为亚美利加洲,简称美洲。16世纪始,航海技术迅速发展。1569年地理学家墨卡托发明的投影成为现代海图绘制的基础。进入20世纪后,现代航海技术取得重大成就,60年代出现奥米加导航系统,随后又出现和应用了卫星导航系统、自动标绘雷达等。 航海要求船舶迅速而安全地行驶,在现代条件下,需采用现代导航设备,了解国际水运法规,世界各国海上交通管理制度。为保证人身、船舶、货物和海洋环境的安全,船舶上还需设置救生、防火、防污染设备和航海仪表及通信设备等。 6. 船舶车钟的作用车钟记录簿是船舶的重要法定文件之一。车钟记录簿只能用不褪色的墨水笔记录。车钟记录簿由值班的驾驶员和轮机员同时记录。用完后由船长和轮机长分别保存一年,然后交公司处理。 7. 船舶车钟信号1.三副主管船舶救生、消防设备。在船长、大副的领导下认真执行公司综合管理体系中的各项规定,履行规定的船舶航行和停泊值班职责。 2. 应熟悉并遵守值班、联系制度,以及航行安全、技术操作方面的规章。装卸期间按大副的布置管理货物装卸。 3. 管理全船消防设备、器材和火警报警设备,定期养护、检查和换剂,使其处于良好的技术状态;灭火机应注明检验和换剂日期;禁止将消防器材移作他用。 4. 管理并熟练地操作固定式灭火系统(主副机扫气箱所属系统除外),保持管系和分路阀的铭牌、标志鲜明。 5. 负责管理救生艇(筏)、救生浮具及其属具、备品,保持清洁完整,定期更换淡水和食品等;保持各种救生信号的有效期(驾驶台由二副管理的求救、救生信号和器材除外)。 6. 负责配置救生衣,经常检查是否放在指定位置,按期试验,如有损坏应即修复或更换。 7. 对船舶各种消防、救生器材、设备物品要认真登记入册,并做好维修、保养、更换和记录。 8. 按规定向船员讲解救生、消防知识和各种设备、器材的操作使用方法。 9. 开航前应编妥船舶应变部署表及船员应变卡,经大副审核、船长批准后公布执行;及时向新接任船员介绍应变岗位和具体职责。? 10. 进出港口、靠离移泊和抛起锚时,在驾驶台执行了望和传达船长的指令,准确记录车钟和时间、重要船位及有关情况,或按船长指定的位置和任务进行工作。 11. 在船舶停泊或装卸货期间,与二副轮值驾驶员停泊班,履行规定的值班职责。 12. 按时向大副提出所管设备的保养计划和修理项目,修船期间,做好自修和验收工作以及大副指派的工作。 13. 弃船时携带双向无线电话、海上搜救雷达应答器。 14. 加强国际国内法规及ISM规则的学习,落实有关要求。执行综合管理体系的要求,努力做好本职工作。 8. 天文船钟收藏价值用中高频,选择频率5000/10000/15000都可以,在整点的时候有校正。也可以查询ALRS,上面有教你在怎么矫正的。还有最简单的办法就是和GPS核对即可! 9. 船舶车钟是什么答:轮船有倒档吗? 轮船一般有倒车。可以在主机“车钟”(操纵杆)操作,“车钟”在正中位置(垂直立着)为停车状态;当“车钟”向前推时,主机会启动并前前进,螺旋桨正转(顺时针);当“车钟”向后拉时,主机会启动并向后倒车(倒退),螺旋桨反转(逆时针)。 但大海有一定的水流和风流,一般说大部分的船“进车”转换成“倒车”需要一定时间才改变方向,所以船舶在机动航行时,一定要注意航速和前船之间的距离等等。船舶无法象汽车一样可以紧急停船。 |
上一篇:民用船舶厂(船舶工业有限公司) | 下一篇:船舶制造厂(造船厂) |
海运发展前景 |
2024-03-21
|
查看详情 >> |
2024年3月20日起长三角水域实施首批创新海事服务举措! |
2024-03-21
|
查看详情 >> |
3月18日同江中俄水运边民互市贸易区正式开启运营 |
2024-03-21
|
查看详情 >> |