海洋光学win10软件(海洋光学发展现状)

江南官网app 2023-07-18 13:30 编辑:jing 152阅读

1. 海洋光学发展现状

海底捞金海变成银海一般是指在光线昏暗的夜晚,海面反射月光或星光的景象。这种现象主要是由于月亮或星星的光线被海面反射,形成一条发亮的银色带状景观,因此被称为银海。银海的变化是由多种因素共同影响的,包括天气、海洋的光学特性、水质等。例如,月亮的位置、云层的遮挡、海水的浑浊程度都可能会影响银海的形成。此外,银海也可能是由于大量的浮游生物在海面活动,使得海面出现闪烁的银色光芒。这种现象在一些有丰富浮游生物资源的海域特别常见。总的来说,银海是一种美丽而神秘的景象,常常给人带来宁静和浪漫的感觉。

2. 海洋光学技术

NDC红外ISP光学海洋光学Labsphere还有一些其他的设备器材商也涉及光学NI什么的

3. 光学在海洋研究中的应用

主要包括物理海洋学、海洋气象学、海洋声学、海洋光学、海洋电磁学、河口海岸带动力学等。

海洋科学是研究海洋的自然现象、性质及其变化规律,以及与开发利用海洋有关的知识体系。它的研究对象是占地球表面71%的海洋,包括海水、溶解和悬浮于海水中的物质、海洋中的生物、海底沉积和海底岩石圈,以及海面上的大气边界层和河口海岸带等。 海洋科学的研究领域十分广泛,其主要内容包括对海洋的物理、化学、生物和地质过程的基础研究,海洋资源开发利用,以及海上军事活动等的应用研究。

4. 海洋光学仪器

水下成像是水下光学和海洋光学学科的重要研究方向,是人类认识海洋、开发利用海洋和保护海洋的重要手段和工具,具有探测目标直观、成像分辨率高、信息含量高等优点。该技术已经被广泛的应用于水中目标侦察/探测/识别、水下考古、海底资源勘探、生物研究、水下工程安装/检修、水下环境监测、救生打捞等领域。

水下成像的优点

1.探测目标直观

2.成像分辨率高

3.信息含量高

4.图像质量好

5.画幅速率高

6.体积小

5. 海洋光学发展现状分析

狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。

光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。

人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、 凹球面镜和凸球面镜中物和像的关系。

自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。

1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。

牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。

牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。

惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。   

19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。

在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。

1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。

1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。

对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用干涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。

1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。

量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。

1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。

1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释 与很大 运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。

这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。

1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。

此后,光学开始进入了一个新的时期,以致于 成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。

爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。

光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并 依此由蔡司 工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出 的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得 了1971年诺贝尔物理学奖。

自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“傅立叶光学”。再加上由于激光所提供的相干光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这 方面理论的重要成就,它为信息传输和处理提供了崭新的技术。

在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

光学的研究内容

我们通常把光学分成几何光学、物理光学和量子光学。

几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象 ,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

1905 年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的 吸力即作逸出功,余下的就变成电子离开金属表面后的动能。

这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。

光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。

应用光学光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。

6. 海洋光学高峰论坛

在海洋中,往往由于水的吸收或折射光线会发生衰减,因此水的深度越深,可见光的强度就越弱,直至看不到。根据海洋地理学和光学原理的研究,大约要达到以下深度时,人眼才看不到光:

- 在海洋浅层,光线可穿过海水进入水中,因此在暴晒或波涛作用下,太阳光线能深入到10-25米的浅海中;

- 在海洋深层,光线的吸收和散射程度会增加,到达60 - 100米深度时,光线强度约为水面下的1% - 0.1%;

- 在深海,即在水深1000米以上的海区,光线几乎被完全吸收,因此人类肉眼已无法看见。

当然,以上数据也只是对于正常气象条件和洁净海水来说的,实际情况可能会因海洋环境、天气状况、水质等因素而不同。

7. 海洋光学发展前景

根据教育部公布的全国第四轮学科评估结果可知,中国海洋大学有海洋科学、水产2个一级学科被评为A+,以下是具体评估结果,供大家参考:

序号 学校名称 一级学科名称 评估结果

1 中国海洋大学 海洋科学 A+

2 中国海洋大学 水产 A+

3 中国海洋大学 生物学 B+

4 中国海洋大学 环境科学与工程 B+

5 中国海洋大学 食品科学与工程 B+

6 中国海洋大学 药学 B+

7 中国海洋大学 应用经济学 B

8 中国海洋大学 法学 B

9 中国海洋大学 外国语言文学 B

10 中国海洋大学 生态学 B

11 中国海洋大学 计算机科学与技术 B

12 中国海洋大学 水利工程 B

13 中国海洋大学 软件工程 B

14 中国海洋大学 工商管理 B

15 中国海洋大学 数学 C+

16 中国海洋大学 地理学 C+

17 中国海洋大学 大气科学 C+

18 中国海洋大学 农林经济管理 C+

19 中国海洋大学 公共管理 C+

20 中国海洋大学 政治学 C

21 中国海洋大学 中国语言文学 C

22 中国海洋大学 化学 C

23 中国海洋大学 材料科学与工程 C

24 中国海洋大学 信息与通信工程 C

25 中国海洋大学 化学工程与技术 C

26 中国海洋大学 物理学 C-

27 中国海洋大学 地质学 C-

28 中国海洋大学 光学工程 C-

29 中国海洋大学 控制科学与工程 C-

30 中国海洋大学 土木工程 C-

31 中国海洋大学 地质资源与地质工程 C-

8. 海洋光学发展现状论文

一、工程光学的应用性,体现在光学自身的发展以及与其他学科的交叉与结合上。

这些交叉与结合使光学得以发展并形成众多各具特色的光学分支学科及其器件、材料如,成像光学、传输光学、矩阵光学、激光物理学、信息光学、统计光学、傅里叶光学、二元光学、非线性光学、晶体光学、偏振光学、薄膜光学、波导光学、集成光学、光纤光学、变折射率光学,自适应光学、近场光学、红外光学、光子学、原子光学、原子和分子光谱学,激光光谱学、辐射度和光度学、色度学,以及计量光学、视觉光学、摄影光学生物医学光学、大气光学、海洋光学等,还有光学工艺学、光源、光学材料和发光、光敏材料,光学元器件、光探测器、光调制器以及各种光学仪器等。

二、工程光学的应用性,还体现在光学技术与电子、半导体、计算机技术等其他相关技术的交融上。

由新的光学分支学科又形成了许多应用技术,例如,由傅里叶光学到光学信息处理技术、光全息技术,由激光物理学、量子光学到激光技术、激光光谱技术、激光加工技术、光放大技术、激光武器技术,由波导光学、集成光学、光纤光学到光通信技术、光纤传感技术、光集成技术,由光子学、非线性光学、集成光学到光电子技术、光存储技术/光盘技术、光计算技术、光显示技术、光探测技术、光调制与解调技术、光外差技术光学计量与测量技术、光学制导技术、光化学技术、光照明技术、摄像技术与投影技术、高速摄影技术、光学显微技术等。

三、工程光学的应用性,尤其体现在为实际应用而制造出的各种光学仪器上,并提供了许多方法及手段。

随着光学的不断发展,光学仪器的种类繁多,其性能与功能、生产与工艺也了很大的提高。光学仪器既包括为光学自身的了解与测量而设计的各种仪器,也包括为各个领域的观察与测量、传感和监控等实际应用而研制的许多仪器。光学仪器由早期用光学元件组合而成的装置,已逐步变成由光学、机械、电子和计算机技术综合而成的新一代精密智能化仪器。光学仪器是精密仪器中十分重要的一大类,它将为人们提供观察、识别、传感、测量、显示、控制、检验等极其重要和关键的手段。光电仪器产品是电器产品中最有前景的一类,它将在生产建设、科学研究,国防安全交通通信、文化教育、娱乐生活,卫生健康等很多方面充分展现魅力与风采。

9. 海洋光学发展现状调查

把白色透明度盘铅直沉入海水中的最大可见深度定义为海水透明度。描述海水透光性能的物理量。由于海洋光学研究和探测技术的发展,对海水透明度又提出新的定义,即当一平行光束通过一定厚度的海水后,其光能流与原来光能流之比。它与海水中含有微粒和悬浮物的大小和数量有关。大洋水中悬浮物较少,透明度一般可达50~60 m;近海悬浮物较多,仅有10~30 m;河口区域由于水中含有大量泥沙,透明度仅为1~2 m。

10. 海洋光学光源

好处是改善照明,使水体显得清澈透亮、深沉蔚蓝,也可以给水草提供光合作用的光源,也有使用紫外线灯的,一举两得,既可以改善光色,又可以消毒水体,预防鱼儿感染病菌。 鱼缸的灯一般有以下几个作用:定时给水草照明,保证水草能够正常生长;给鱼缸提供光线,保证美感。选择光源要根据鱼缸饲养的鱼种类来决定。

一般三湖慈雕类观赏鱼和海水鱼比较适合蓝色光源,营造大海深沉蔚蓝的感觉;红龙、鹦鹉等适合用红色光源,增加颜色的程度;绝大多数热带鱼适合偏日光的白色光源,这样的光源最接近大自然,可以让热带鱼充分展示自然的本色。

一般普通的鱼本人建议选择白色光。

选择观赏你如果是用在观赏的话,灯具光的颜色和鱼的颜色要搭配好。 灯具对于一些名贵的鱼有一定的诱色作用,至于选什么灯就看你养什么鱼了,一般通用的可以买T5 T8的灯管,有专门的灯架;也可以用潜水灯;低压led套胶防水灯带等等来做光源。光的颜色要选择使得整体看上去更美观! 一些常规热带鱼,用白光,您如果嫌色彩单调,可以在鱼缸的背景纸上做点文章,如水草类型的背景纸,很能突出热带鱼的绚丽多彩。

背景纸价格便宜,随时可以更换。

11. 海洋光学发展历史

中国海洋大学光学是属于物理学科,是物理学的重要分支学科

下一篇:海洋观测设备安全隐患(海洋观测的重要意义)
上一篇:返回栏目
Baidu
map