海洋浮游植物固碳(海洋固碳概念)

江南官网app 2023-07-03 08:22 编辑:jing 280阅读

1. 海洋固碳概念

1.低碳能源取代化石燃料、植树造林、节能减排、碳捕捉等形式,以抵消自身产生的二氧化碳排放量,排放多少就吸收多少,达到相对“零排放”。

2.强化国土空间规划和用途管控,有效发挥森林、草原、湿地、海洋、土壤、冻土的固碳作用,提升生态系统碳汇增量。

3.加强应对气候变化国际合作,推进国际规则标准制定,建设绿色丝绸之路。

2. 海洋碳汇

陆地和海洋是地球重要的碳汇,每年吸收全球约一半的碳排放量。如能提升碳汇功能,固定更多的碳,将会分担部分减排的压力。针对陆地生态系统固碳能力和潜力开展的科学研究较多,也得到国际社会广泛的关注。

早在1997年签署的《京都议定书》,就允许各国通过人工造林、森林和农田管理等人为活动导致的“碳汇”用于抵消本国承诺的温室气体减排指标。在我国,通过持续大规模开展退耕还林和植树造林,大幅增加了森林碳汇,也是不争的事实。相比陆地生态系统,海洋的固碳能力毫不逊色。

2009年,联合国环境规划署等多家机构联合发布的《蓝碳:健康海洋对碳的固定作用—快速反应评估》报告就指出,海洋生物具有固碳效率高、储存时间长的独特优势。在2019年《联合国气候变化框架公约》第25次缔约方大会上,加强海洋的减缓和适应行动得到前所未有的关注,有望被纳入国家温室气体清单,成为未来气候变化应对的又一重要措施。尽管海洋碳汇展现出了广阔的应用前景,但从理念到行动还面临不少挑战。

和陆地碳汇相比,我们对海洋碳汇的储量、速率、过程机制和功能缺乏足够的了解,尚未建立起专门的观测和评估体系,难以做到“可衡量、可报告、可核查”。因此,需要加强科学研究和监测,建立健全海洋碳汇的核算体系,形成系统的海洋碳汇核查理论、监测指标和评估方法。通过科学进步,凝聚更为广泛的国际共识。我国海洋资源具有得天独厚的区位优势,海洋和海岸带生态系统丰富多样。然而,几十年来,受到富营养化、填海造陆、沿海开发等人类活动的影响,我国海洋和海岸带生态系统遭到严重破坏。

与20世纪50年代相比,我国红树林面积丧失了60%,珊瑚礁面积减少了80%,海草床绝大部分消失。“皮之不存,毛将焉附”,固碳能力自然也无从谈起。增加海洋碳汇首先在于海洋生态系统的恢复,从某种意义上讲,保护海洋就是最有效的固碳方式。近年来,渔业碳汇逐渐进入人们的视野,其原理是通过渔业生产活动促进水生生物吸收水体中的二氧化碳,并通过收获把这些碳移出水体,达到负排放的功效。

我国是海水养殖大国,养殖面积和产量均居世界首位。随着现代立体养殖、深远海养殖等关键技术的突破,广阔海域具有了巨大的空间潜力。通过筛选高效良种,构建增汇模式,蓝碳产业未来可期。

海洋碳汇是一个系统工程,既取决于产学研各界的共同努力,也离不开相关政策法规的配套支撑。我国前期探索值得称道,后续应加强群策群力,尽早形成中国方案,充分激发海洋碳汇的价值和潜力,为兑现我国碳中和承诺不断努力实践,从而彰显负责任大国担当。

3. 海洋生物固碳

海洋面积广阔,海洋生物众多。固碳能力强。

通过海洋活动及海洋生物吸收大气中的二氧化碳,并将其固定、储存在海洋的过程、活动和机制被称为海洋碳汇。

海洋占地球表面积的71%,这个庞大的碳库储碳量是陆地的20倍、大气的50倍。自工业革命以来,人类产生的二氧化碳有大约48%被海水吸收,可以说,海洋是调节全球气候变化的重要“缓冲带”。

4. 海洋 固碳

碳封存是指将二氧化碳从大气中捕获并将其储存在长期的地下或海洋等储存库中,以减少其在大气中的浓度。

这一技术被广泛认为是应对气候变化的一种重要手段,因为二氧化碳是导致全球变暖的主要温室气体之一。碳封存通常分为三个步骤:捕获、运输和储存。捕获可以通过燃烧化石燃料时将二氧化碳分离出来、利用生物质或其他方法来实现。

运输包括将二氧化碳运输到储存库的过程。储存库可以是地下岩层、水合物储层或海底盐穴等。虽然碳封存技术已经被证明是可行的,但也存在一些争议,例如成本高昂、安全性问题和可能对环境造成的潜在影响等。

5. 固体海洋

又称可燃冰。二十世纪七十年代,美国地质工作者在海洋中钻探时,发现了一种看上去像普通干冰的东西,当它从海底被捞上来后,那些“冰”很快就成为冒着气泡的泥水,而那些气泡却意外地被点着了,这些气泡就是甲烷。

据研究测试,这些像干冰一样的灰白色物质,是由天然气与水在高压低温条件下结晶形成的固态混合物。科研考察结果表明,它仅存在于海底或陆地冻土带内。纯净的天然气水合物外观呈白色,形似冰雪,可以像固体酒精一样直接点燃,因此,人们通俗、形象地称其为“可燃冰”。

6. 海底固碳

关于这个问题,碳封存技术主要包括以下几种:

1. 地下封存:将二氧化碳直接注入地下,通常是在深度超过800米的地层中进行。

2. 压缩封存:将二氧化碳压缩成液态或超临界状态,然后封存在地下或海底储层中。

3. 化学封存:将二氧化碳与矿物质或化学物质反应,将其转化为稳定的无害物质。

4. 生物封存:利用植物或海洋生物对二氧化碳的吸收和固定,将其封存在生物体中,如植物固碳、海洋生物封存等。

5. 碳捕集:利用各种技术将工业排放的二氧化碳捕集并在地下或海底储层中封存,如燃煤电站碳捕集、水平井碳捕集等。

7. 海洋固氮作用

生物固氮原理简介生物固氮是固氮微生物特有的一种生理功能,这种功能是在固氮酶的催化作用下进行的。固氮酶是一种能够将分子氮还原成氨的酶。固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含有铁和钼,叫做钼铁蛋白。只有铁蛋白和钼铁蛋白同时存在,固氮酶才具有固氮的作用。生物固氮过程可以用下面的反应式概括表示。

N2+6H++nMg-ATP+6e-2NH3+nMg-ADP+nPi分析上面的反应式可以看出,分子氮的还原过程是在固氮酶的催化作用下进行的。有三点需要说明:

第一,ATP一定要与镁(Mg)结合,形成Mg-ATP复合物后才能起作用;

第二,固氮酶具有底物多样性的特点,除了能够催化N2还原成NH3以外,还能催化乙炔还原成乙烯(固氮酶催化乙炔还原成乙烯的化学反应,常被科学家用来测定固氮酶的活性)等;

第三,生物固氮过程中实际上还需要黄素氧还蛋白或铁氧还蛋白参与,这两种物质作为电子载体能够起到传递电子的作用。

铁蛋白与Mg-ATP结合以后,被黄素氧还蛋白或铁氧还蛋白还原,并与钼铁蛋白暂时结合以传递电子。

铁蛋白每传递一个e-给钼铁蛋白,同时伴随有两个Mg-ATP的水解。

在这一催化反应中,铁蛋白反复氧化和还原,只有这样,e-和H+才能依次通过铁蛋白和钼铁蛋白,最终传递给N2和乙炔,使它们分别还原成NH3和乙烯。固氮微生物的类型固氮生物都属于个体微小的原核生物,所以,固氮生物又叫做固氮微生物。根据固氮微生物的固氮特点以及与植物的关系,可以将它们分为自生固氮微生物、共生固氮微生物和联合固氮微生物三类。

自生固氮微生物在土壤或培养基中生活时,可以自行固定空气中的分子态氮,对植物没有依存关系。常见的自生固氮微生物包括以圆褐固氮菌为代表的好氧性自生固氮菌、以梭菌为代表的厌氧性自生固氮菌,以及以鱼腥藻、念珠藻和颤藻为代表的具有异形胞的固氮蓝藻(异形胞内含有固氮酶,可以进行生物固氮)。

共生固氮微生物只有和植物互利共生时,才能固定空气中的分子态氮。

共生固氮微生物可以分为两类:一类是与豆科植物互利共生的根瘤菌,以及与桤木属、杨梅属和沙棘属等非豆科植物共生的弗兰克氏放线菌;另一类是与红萍(又叫做满江红)等水生蕨类植物或罗汉松等裸子植物共生的蓝藻。

由蓝藻和某些真菌形成的地衣也属于这一类。

有些固氮微生物如固氮螺菌、雀稗固氮菌等,能够生活在玉米、雀稗、水稻和甘蔗等植物根内的皮层细胞之间。

这些固氮微生物和共生的植物之间具有一定的专一性,但是不形成根瘤那样的特殊结构。

这些微生物还能够自行固氮,它们的固氮特点介于自生固氮和共生固氮之间,这种固氮形式叫做联合固氮。豆科植物的根瘤根瘤菌属中有十几种根瘤菌,这些根瘤菌与豆科植物具有特殊的互利共生关系,也就是一种根瘤菌只能在一种或若干种豆科植物的根上形成根瘤。

根据每种根瘤菌只能在特定的一种或若干种豆科植物上结瘤的现象,人们把根瘤菌及其豆科寄主分成不同的族,这些族也叫做互接种族。

一种豆科植物的根瘤菌只能使同一个互接种族内的其他豆科植物结瘤。形成互接种族的原因是,豆科植物的根毛能够分泌一类特殊的蛋白质,根瘤菌细胞的表面存在着多糖物质,只有同族豆科植物根毛分泌的蛋白质与同族根瘤菌细胞表面的多糖物质才能产生特异性结合。常见的互接种族及所含的豆科植物有:苜蓿族:包括苜蓿属和草木犀属植物;

三叶草族:只有三叶草属一个属;豌豆族:包括豌豆属、蚕豆属、山黧豆属、兵豆属和鹰嘴豆属植物;四季豆族:包括四季豆属中四季豆等植物;大豆族:只有大豆属一个属;豇豆族:包括豇豆、花生、绿豆、赤豆等植物;紫云英族:只有黄芪属一个属(包括紫云英、沙打旺等)。当豆科植物的根系在土壤中生长时,会刺激同一互接种族的根瘤菌在根系附近大量繁殖。豆科植物对根瘤菌的这种影响,在土壤中可以达到2~3cm的距离。这样,根系附近的、与该种豆科植物同族的根瘤菌就会不断地繁殖并聚集到根毛的顶端。聚集在根毛顶端的根瘤菌分泌一种纤维素酶,将根毛顶端的细胞壁溶解掉。随后,根瘤菌从根毛顶端侵入到根的内部,并形成感染丝(感染丝是指根瘤菌排列成行,外面包有一层黏液状的物质)。根瘤菌就这样不断地进入根内,并且大量繁殖。在根瘤菌侵入的刺激下,根细胞分泌一种纤维素,将感染丝包围起来,形成一条分支或不分支的纤维素鞘,这样的结构叫做侵入线(图2-4)。侵入线不断地向内延伸,一直到达根的内皮层。根的内皮层处的薄壁细胞受到根瘤菌分泌物的刺激,不断进行细胞分裂,从而使该处的组织膨大,最终形成根瘤。氮循环简介氮素在自然界中有多种存在形式,其中,数量最多的是大气中的氮气,总量约3.9×1015t。除了少数原核生物以外,其他所有的生物都不能直接利用氮气。目前,陆地上生物体内储存的有机氮的总量达1.1×1010~1.4×1010t。这部分氮素的数量尽管不算多,但是能够迅速地再循环,从而可以反复地供植物吸收利用。存在于土壤中的有机氮总量约为3.0×1011t,这部分氮素可以逐年分解成无机态氮供植物吸收利用。海洋中的有机氮约为5.0×1011t,这部分氮素可以被海洋生物循环利用。构成氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮。这一过程叫做生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮被微生物分解后形成氨,这一过程叫做氨化作用。在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程叫做反硝化作用。大气中的分子态氮被还原成氨,这一过程叫做固氮作用。没有固氮作用,大气中的分子态氮就不能被植物吸收利用。地球上固氮作用的途径有三种:生物固氮、工业固氮(用高温、高压和化学催化的方法,将氮转化成氨)和高能固氮(如闪电等高空瞬间放电所产生的高能,可以使空气中的氮与水中的氢结合,形成氨和硝酸,氨和硝酸则由雨水带到地面)。据科学家估算,每年生物固氮的总量占地球上固氮总量的90%左右,可见,生物固氮在地球的氮循环中具有十分重要的作用。根瘤菌菌剂的自制和使用根瘤菌菌剂可以购买,也可以自制。下面介绍两种简易的自制方法。①干根瘤法。豆科作物处于开花期时,根瘤菌的繁殖和固氮能力最旺盛。这时,选择生长健壮的植株,小心地连根挖起(尽量不要损伤根瘤)。挑选根瘤呈粉红色的、个大、数多的植株,剪去枝叶和细根后,挂在通风背阴处备用。也可以在收获豆科作物时进行选留,只是拌种时的用量应比盛花期留取的要多一些。第二年播种前,将根瘤取下,放在罐内捣碎,加上无菌水或冷开水搅拌均匀后,就可以拌种了。一般每公顷的豆种用75~150株的根瘤即可。②鲜根瘤法。预先在苗圃中种植同种豆科作物。大田播种时,从苗圃内生长健壮的豆科植株上选取个大和呈粉红色的新鲜根瘤,放在罐内捣碎,加上无菌水或冷开水搅拌均匀后就可以拌种了。这种方法只需要少量新鲜根瘤(每公顷的豆种可用75~150个根瘤)。使用根瘤菌菌剂时应注意以下几点。第一,根瘤菌对不同种甚至不同品种的豆科作物都有选择性。所以,所用的根瘤菌菌剂一定要和豆科作物属于同一互接种族,否则就没有增产效果。第二,太阳光中的紫外线对根瘤菌具有较强的杀伤力,所以,干鲜根瘤、自制或购买的根瘤菌菌剂以及拌好的豆种,一定要放在阴凉处,避免阳光直射。第三,拌种要均匀,不要擦伤种皮。第四,拌种时,不能同时拌入农药。第五,拌种时,每公顷的豆种如果加入75~150g钼酸铵,会有更好的增产效果。多年种植某种豆科作物的农田,如果继续种植这种豆科作物,也应接种根瘤菌。这是因为土壤中原有根瘤菌的结瘤能力和固氮能力往往下降,即使能够结瘤,固氮能力也不高。需要指出的是,根瘤菌的固氮能力,不仅取决于根瘤菌菌种的质量(人工培育的根瘤菌的固氮能力,一般比野生的根瘤菌的固氮能力高几倍),而且取决于土壤条件和栽培措施。因此,人们不仅要进行根瘤菌拌种,而且要加强农田管理并适时适量地施用磷、钾肥料和微量元素肥料(如硼肥、钼肥、铁肥等),只有这样才能更好地发挥根瘤菌的固氮能力。自生固氮菌菌剂的使用我国推广使用的自生固氮菌菌剂,主要由圆褐固氮菌和棕色固氮菌制成。这些自生固氮菌菌剂,对于小麦、水稻、棉花和玉米等农作物都有一定的增产效果。施用方式主要有基施(和农家肥拌匀后,以基肥的形式施用)、追施(和潮湿的肥土混合均匀,堆放三五天并拌入一些稀粪水后,浇在农作物的根部并覆盖土壤)和拌种(注意要在阴凉处拌种,拌种时不能拌入农药,并且在阴凉处晾干后再播种)。多年的生产实践表明,农田中使用自生固氮菌菌剂的增产效果不很稳定。为此,目前科学家对于自生固氮菌的增产作用还有争论,有的认为是自生固氮菌的固氮作用起到了增产作用,有的则认为主要是自生固氮菌分泌的生长素起到了增产作用。可以肯定的是,单纯施用自生固氮菌菌剂不能满足农作物对氮素营养的全部需要,自生固氮菌菌剂的施用只能是提供农作物氮素营养和促进农作物生长的一种补充措施。

8. 海洋碳汇概念股那3家

白碳就是二氧化硅,又名叫白碳黑.白炭黑是微细粉末状或超细粒子状无水及含水二氧化硅或硅酸盐类的通称.平时所称的白炭黑为水合二氧化硅(SiO2·/7,H20),高纯者SiO2含量达99.8% ,质轻,原始颗粒粒径一般小于0.0003 mm,密度在2.319~2.653 t/m 之间,熔点是1 750 cc,不溶于水和酸,溶于强碱和氢氟酸.白炭黑的化学稳定性好,受高温不易分解、不燃烧、比表面积大、电绝缘性强,具有很高的多孑L性、吸水性,有很好的补强和增黏作用、良好的分散性、悬浮和振动液化特性.白炭黑应用领域十分广阔,是生产浅色橡胶和塑料制品良好的补强剂、填充剂、润滑剂,它是涂料的防沉剂,油墨的滴落防止剂,印刷油墨和黏结剂的补强性填充剂,合成树脂、纤维、增强塑料、纸张纤维、研磨剂、石蜡的填充剂,白色颜料和农药、树脂薄膜类的防黏着剂,粉末灭火器的分散基质材料以及用于制造润滑剂等

下一篇:海洋幼儿园教育理念(海洋幼儿园教育理念怎么写)
上一篇:返回栏目
Baidu
map