海洋有机物质分类(海洋有机物的构成)

江南官网app 2023-05-31 18:19 编辑:jing 264阅读

1. 海洋有机物的构成

1.浅海生态系统

水深6~200m左右的大陆架范围。世界主要经济渔场几乎都位于大陆架和大陆架附近,这里具有丰富多样的鱼类。陆架区的许多海洋现象都具有显著的季节性变化,潮汐、波浪、海流的作用都比较强烈。海水中含有大量的深解氧和各种营养盐类,所以陆架区特别是河口地带是渔业和养殖业的重要场所;由于陆架区有着丰富的有机质,特别是繁殖极快、数量极大和很快死亡的微生物残骸,它们长期埋藏在陆架区沉积盆地泥砂中,在缺氧的环境下,受到一定的温度、压力和细菌的分解作用,形成巨大的海底油气田,目前世界上许多国家在大陆架上开采或正在计划开发利用这个天然的海底宝库。

2.深海生态系统

深海带动水深2000~6000m环境条件稳定,无光、温度在0—4oC左右,海水化学组成比较稳定,底土是软相粘泥,压力很大,因为深海中没有进行光合作用的植物,食物条件苛刻,全靠上层的食物颗粒下沉。由于无光,深海动物视觉器官多退化,或者具发光的器官,也有的眼极大,位于长柄末端,对微弱的光有感觉能力,没有坚固骨骼和有力肌肉,有薄而透明的皮肤以适应高压的特征。

3.大洋生态系统

图2 鲨鱼

从深海带到开阔大洋,深于日光能透入的最深界线。大洋面积很大,但水环境相当一致,惟有水温变化,尤其是暖流与寒流的分布。由于大洋缺乏动物隐蔽场所,所以大洋动物一般有明显的保护色。

4.火山口生态系统

最近,一些学者在考察深海生物时,发现了一种极为特殊的生物群落,它位于Galapago 群岛附近深海的中央海嵴的火山口周围,火山口放出的水流温度高于周围200oC,栖居着生物界前所未知的异乎寻常的生物,如1/3m长的蛤蜊,3m长的蠕虫,它们的食物来源是共生的化学合成细菌,它通过氧化硫化物和还原C02而制造有机物,生产三磷酸腺苷。

5.河口生态系统

河口湾是大陆水系进入海洋的特殊生态系统,由于许多河口湾是人类海陆交通要地,受人类活动干扰甚深,也易于出现赤潮,河口湾生态学是一重要研究领域。一般地说,河口区生物的种类组成较为复杂,多样性指数较高。

这里需要说明的是,根据《湿地公约》的规定,把低潮时水深不超过6m的海域归为湿地范畴,所以潮间带生态系统等未划入海洋生态系统范畴。但潮间带海洋植物是海洋生态系统生产者的重要组成部分

2. 海洋中的有机物有什么作用

海源

1.

指海洋,靠近陆地的广阔水域,比洋小;

2.

形容巨大,宏大,数量非常多,宽广,博大,广大等。用作人名意指博大、胸怀宽广。

海洋(sea),地理名词,是地球上最广阔的水体的总称。地球表面被各大陆地分隔为彼此相通的广大水域称为海洋,海洋的中心部分称作洋,边缘部分称作海,彼此沟通组成统一的水体。

海水水体以及海洋中的各种组成物质,构成了对人类生存和发展有着重要意义的海洋环境。海水运动是海洋环境的核心内容,主要由四部分构成:海水运动形式;洋流的成因;表层洋流的分布;洋流对地理环境的影响。

地球上海洋总面积约为3.6亿平方千米,约占地球表面积的71%,平均水深约3795米。海洋中含有十三亿五千多万立方千米的水,约占地球上总水量的97%,而可用于人类饮用只占2%。

相关说明

原始的海洋,海水不是咸的,而是带酸性、又是缺氧的。水分不断蒸发,反复地形成云致雨,重新落回地面,把陆地和海底岩石中的盐分溶解,不断地汇集于海水中。经过亿万年的积累融合,才变成了大体匀的咸水。

同时,由于大气中当时没有氧气,也没有臭氧层,紫外线可以直达地面,靠海水的保护,生物首先在海洋里诞生。大约在38亿年前,即在海洋里产生了有机物,先有低等的单细胞生物。在六亿年前的古生代,有了海藻类,在阳光下进行光合作用,产生了氧气,慢慢积累的结果,形成了臭氧层。此时,生物才开始登上陆地。

总之,经过水量和盐分的逐渐增加,及地质历史上的沧桑巨变,原始海洋逐渐演变成今天的海洋。

3. 海洋中有机物主要存在形式

海洋食物链marinefoodchain 在海洋生物群落中,从植物、细菌或有机物开始,经植食性动物至各级肉食性动物,依次形成摄食者与被食者的营养关系称为食物链,亦称为“营养链”。食物网是食物链的扩大与复杂化,它表示在各种生物的营养层次多变情况下,形成的错综复杂的网络状营养关系。物质和能量经过海洋食物链和食物网的各个环节所进行的转换与流动,是海洋生态系中物质循环和能量流动的一个基本过程。 营养层次海洋浮游植物和底栖植物是最主要的初级生产者。它们为植食性动物,如钩虾(Gammarus)、哲水蚤(Calanus)等浮游甲壳动物,蛤仔(Ruditapes)、鲍(Haliotis)等软体动物,鲻(Muilcephalus)、遮目鱼(Chanos)等鱼类,提供食料。植食性动物为一级肉食性动物所食,如海蜇(Rhopilema)、箭虫(Saitta)、海星、对虾(Penaeus)、许多鱼类、须鲸(Balaenoptera)等。一级肉食性动物又为二级肉食性动物(大型鱼类和大型无脊椎动物)所食。随后,它们再被三级肉食性动物(凶猛鱼类和哺乳动物)所食。依此构成食物链,食物链中的各个生物类群层次,叫做营养层次。 类别海洋中的初级生产者——海洋植物,很大部分不是直接被植食性动物所食用,而是死亡后被细菌分解为碎屑,然后再为某些动物所利用。因此,如同在陆地上和淡水中的情况,在海洋生态系中也存在着相互平行、相互转化的两类基本食物链:一类是以浮游植物和底栖植物为起点的植食食物链,另一类是以碎屑为起点的碎屑食物链。 海洋中无生命的有机物质除以碎屑形式存在外,还有大量的溶解有机物,其数量比碎屑有机物还要多好几倍。它们在一定条件下可形成聚集物,成为碎屑有机物,而为某些动物所利用。所以,在海洋生态系的物质循环和能量流动中,碎屑食物链的作用不一定低于植食食物链。 此外,在海域中还存在一条腐食食物链。它以营腐生生活的细菌和以化学能合成的细菌为起点,在海洋生态系中也有一定的作用。 特点海洋食物链较长,经常达到4~5级。而陆生食物链通常仅有2~3级,很少达到4~5级。海洋食物链的许多环节是可逆的、多分枝的,加上碎屑食物链、植食食物链和腐食食物链相互交错,网络状的营养关系比陆地的更多样、更复杂。因此,在海洋中用食物网更能确切表达海洋生物之间的营养关系。 物质和能量的传递食物链只表示有机物质和能量从一种生物传递到另一种生物中的转移与流动方向,而不表示每一营养层次所需的有机物和能量的数量(即生物量和热量)。这些量的大小须视不同摄食者对所摄食食物的实际利用效率,或者说依被食者向摄食者的转换效率而定。从图[食物链转换效率示意图]中可以看出磷虾为所食时转换效率接近10%,为所食时为7%左右,而为鲐所食时则为4%左右。这说明同一种饵料由于摄食者不同,转换效率也不同。其次,鲐摄食磷虾的效率为4%左右,若中间经过的环节,按磷虾→→鲐这一条食物链流动的情形几乎约低半个以上的数量级。 可见食物链每升高一个层次,有机物质和能量就要有很大的损失。食物链的层次越多,总体效率就越低。因此,从初级生产者浮游植物、底栖植物或碎屑算起,处于食物链层次越高的动物,其相对数量越少;相反,处于食物链层次越低的动物,其相对数量越多。这便构成了生物量金字塔和能量金字塔。 食物网在自然界中,一种生物往往摄食多种生物,而它本身也为多种生物所食。因而每种生物在一个海域中是处于不同食物链的不同环节,或者说处于不同的营养层次之中。这样,整个海域中各种生物彼此之间的食物关系,就成了一个错综复杂的网络结构。事实上,同一种鱼也依其发育生长阶段、季节和所在海域的不同,其饵料也各异,因而食物网的结构是可变的

4. 由海洋有机

氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。

氮素在自然界中有多种存在形式,其中,数量最多的是大气中的氮气,总量约3.9×1015 t。除了少数原核生物以外,其他所有的生物都不能直接利用氮气。目前,陆地上生物体内储存的有机氮的总量达1.1×1010~1.4×1010 t。这部分氮素的数量尽管不算多,但是能够迅速地再循环,从而可以反复地供植物吸收利用。存在于土壤中的有机氮总量约为3.0×1011 t,这部分氮素可以逐年分解成无机态氮供植物吸收利用。海洋中的有机氮约为5.0×1011 t,这部分氮素可以被海洋生物循环利用。

构成氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。

5. 海洋有机物的特点

海洋中生活许许多多各种各样的微生物,它们是以单细胞或以群体形式存在,能独立生活的生物,包括病毒、细菌、真菌、单细胞藻类及原生动物等等。但按狭意所指仅为病毒、细菌和真菌等。目前研究较多的是细菌。微生物体积大多非常微,需在显微镜下才能看见。如海洋细菌,它的直经大多仅为几个微米到零点几个微米。海洋微生物种类繁多,数量颇大。如胶州湾每毫升海水中生活着几百个,多至几千万个细菌。它们对我们生活及工农业生产有着极为密切的关系。

首先海洋微生物是海洋生态系统的重要成员,参与海洋中物质循环,如果没有这些微生物,那么海洋中生物尸体无法分解。生物所必须营养元素逐渐枯竭,生命无法繁延。同时海洋微生物在消除海洋中污染物质、海洋自净过程中起着重要作用。如能将石油降解成水和二氧化碳的类氧化菌,能分解有机酸等有机物的光合细菌,还有许多细菌能分解农药。海洋中污染物质几乎都能被微生物分解,只是速度快慢而已。海洋中还有许多微生物的代谢产物可用作药物、酶制剂等微生物制剂。

但是海洋中也有一些微生物对人类是有害的。如夏天我们吃了不新鲜的又没有很好煮孰的蛤蜊等贝类,能引起呕吐和腹泻,这主要是贝类中生活着付溶血孤菌之故,水产养殖中鱼、虾、贝、藻等病害发生,大多也是由于感染了致病微生物造成的;另外,港口、码头、船只污损都是有微生物作用的结果。

6. 海洋有机物的构成有哪些

现在我们来看看向下垂直穿过海底一万一千米,看看各水层都有哪些动物。海洋的水层从垂直方向可划分为:

海洋上层:从海面到水下200米。

海洋中层:水层深度为水下200-1000米。

海洋深层:水深1000-4000米。

海洋深渊层:水深4000-6000米。

海洋超深渊层:水深6000-11000米。

上层:绝大多数生物汇聚于此

在上层水域,由于阳光充足,浮游植物可以充分进行光合作用,因此该层又叫光合作用层。这些生产者为海洋生态系统注入了源源不断的生产力,磷虾吃浮游生物,小鱼吃磷虾,大鱼吃小鱼,虎鲸和鲨鱼又吃大鱼,整个食物网欣欣向荣。

最大的动物:蓝鲸

我们知道的大型海生动物如各种海豚、鲸鱼、鲨鱼和金枪鱼等,绝大多数都处在这个水层中。举一些具有代表性的例子:最大的动物——超过200吨的蓝鲸,最大的鱼类——40多吨的鲸鲨,最大的掠食性鱼类——可达3吨的大白鲨,最长的水母——触手长达36.6米的狮鬃水母,最大的双壳贝类——壳长1.37米、软组织重333千克的大砗磲。

触须可达37米的狮鬃水母

中层:深潜者的乐园

往下是200-1000米深度的海洋中层,作为透光的上层和完全黑暗的深层之间的过渡带,本就微弱的光线在这个水层随着深度增加而逐渐消失,而些许的光线也不足以进行光合作用。中层带的生物群落普遍体型较小,像灯笼鱼科、褶胸鱼科、头足类、磷虾和其它甲壳类动物通常只有几厘米到十几厘米的样子。

斑点灯笼鱼

由于该层无法进行光合作用,这里环境较上层严苛得多,食物网的维系有赖上层供给营养,许多生物抓住一切机会摄取上层水域降落下来的有机物质。上层有机物质主要以絮状物形式沉降下来,在探照灯照射下像极了雪花,我们形象地将其称之为"海雪"。

不过,处于中层的海洋生物还可以通过另一种途径吸收上层水域的养分,那就是晚上垂直迁移到表层,在富含养分的上层水域觅食,白天再回到深水,躲避更大的掠食者。因此,这个生态系统在碳循环上可以说是极具效率的,它拥有极高多样性和生物量的鱼类、头足类和甲壳类,能够为远洋地区的上层大型掠食者提供重要的食物来源,比如一些远洋鲨鱼、鲸豚有时会下潜数百米前往中层水域进食头足类和鱼,而抹香鲸这样的深潜型鲸鱼为了觅食更是频繁进入中层,可以视作中层生物群落的过渡成员。

最重的硬骨鱼:翻车鱼

虽说比不上表层,中层带也有巨型海生动物,现今最重的硬骨鱼——重达2.3吨的翻车鱼过去一般被认为是典型的上层鱼,但近年来有研究显示翻车鱼比以往认为的更频繁地潜入中层;最长的硬骨鱼——长达8米的皇带鱼就可以算作中层鱼(严格地说它是上层中层都有分布);而两种巨型鱿鱼——275千克的大王鱿和将近500千克重的南极中爪鱿在这个深度已有分布,当然,两者的生境也包括下一个水层。

大王鱿,中层水域的顶级掠食者

深层:吞噬者之乡

接着是水深1000-4000米的深海层,这里一片黑暗,生物发光是唯一的光源,如果说中层水域的动物们尚且具备强壮的肌肉进行追捕和长距离迁徙,这一深度的大多数生物,其肌肉已经松弛到只适合原地等待猎物主动送上门,极为缓慢的代谢也正是对这种恶劣环境的适应。

约氏黑角鮟鱇

深层水域的主要鱼类是小型钻光鱼和鮟鱇鱼,尖牙鱼、蝰鱼也较常见,这些鱼体型很小,许多在10厘米左右,很少超过25厘米,它们大部分的时间都花在停留于水柱耐心地等待猎物出现。相比中层水域,这里的生物不能太指望上层飘落多少养分,毕竟,上层产生的有机物有20%落到中层,但轮到深层就只有5%了。

在这片贫瘠之海,许多深海鱼类必须想办法吃掉任何能遇到的东西,哪怕对方比自己还大,其中有一些种类也确实为了达到这种目的而演化出了超强的吞噬能力。黑叉齿龙䲢,栖息深度为700-2745米,可能是把吞噬大法修炼到极致的动物,一只体长19厘米的黑叉齿龙䲢曾经吞下84厘米长的黑刃魣蛇鲭,受害者整整是它的4.5倍长。

黑叉齿龙䲢可能是有记录最夸张的吞噬者

体长可达一米的吞噬鳗在这个水层可以算得上小巨无霸了,但真正引人注目的是它那不成比例的超大嘴巴,松松垮垮的颌骨构造可以使这张巨嘴张到很大,再加上具有伸缩性的胃,足以让吞噬鳗吞下比自己还大的猎物。

深海小巨无霸:吞噬鳗

不过,这里还是存在一些真正巨人的,几种巨大的鲨鱼栖息于这个水层(它们在上层和中层皆有分布),比如可达6米的灰六鳃鲨,达到甚至超过6米、体型比之大白鲨也不遑多让的几种睡鲨,抹香鲸、喙鲸等深潜型鲸鱼虽说进入这个深度的频次远不如中层,但它们有时也会来到这个区域搜寻潜在的食物。

硕大的灰六鳃鲨

深渊层:以海雪为生的底栖拾荒者

4000-6000米是深渊层,这里是一个食物极端匮乏的地带,栖息在底部的深海平原上的底栖生物是主流,包括小型鱼类、海参海胆、多毛蠕虫、各种甲壳类和双壳贝类,上层沉降的海雪是它们的美餐。

海雪是由表层生物碎屑、粪便颗粒、死去的浮游生物聚集而成的絮状物,几天之内即可沉降到海底,极大地提高了表层有机物的传递速率。相比之下单个浮游生物沉降速度很慢,每天一米,需要超过十年才能沉到底部,通常到不了海底就被分解者分解掉了。

北冰洋深海的海雪

海雪源源不断从表层转运有机物质,这种以生物为媒介,通过生物生产、消费、分解和沉降作用,将表层有机物传递给底层的过程,我们称之为海洋生物泵。在没有光合作用的深渊水域,以海雪为主的海洋生物泵就是深海生物的主要食物来源,构成了深海小食物网的基石。

海底生物个头小,代谢低,所需的食物并不多,偶尔如果碰到比海雪大很多的食物,就能够解决它们几年甚至几十年的伙食问题,比如在海面上大量繁殖后死亡并迅速沉底的藻类,以及进食藻类后快速繁殖、大量聚在一起并在死亡后下沉的樽海鞘,又或者沉入海底的鲸鱼尸体,这些都可以算得上底栖生物们的深海盛宴了。

水下四千多米的海底,一大群海参铺满了海床

在海底的某些地区,比如洋中脊,能够形成热液喷口,此处的养分较为丰富,海底微生物可进行初级生产将化学能固定为生物能,在没有光合作用的情况下也能维持许多底栖生物。

超深渊层:高压寒冷的黑色荒漠

最后一层,超深渊层,是海洋中最深的地带,存在于海底狭长的海沟中,水深6000-11000米,可谓深渊中的深渊。超深渊栖息地在全球海洋中数量不多,总共也仅有46个(33条沟壕和13处洼地),这些海沟的平均深度约为8216米,其中最深的是11034米的马里亚纳海沟。

在这里,生存条件之严酷已无需赘言,物种多样性和生物量已大大降低,但还是有一些生命在此地顽强生存着,包括鱼类、海参、多毛类、双壳类、等足类、腹足类和端足类动物。目前拍到的活体鱼类最深纪录为钝口拟狮子鱼——8178米,可达23.8厘米,鱼类被捕获的最深纪录为神女底鼬鳚——最大体长16.5厘米,捕获深度8370米。

拍摄于水下7400米的拟狮子鱼,相当可爱

一些无脊椎动物可以生存于更深的水域,包括某些海参、端足类可超过10000米水深,比如体长可达5厘米(在深海已不算小)的短脚双眼钩虾,这种端足类动物栖息于马里亚纳海沟的最深处,能够消化埋在海底深处的木屑,对海底木质食物的利用可能是它克服恶劣生存环境的有利因素之一。

栖身于马里亚纳海沟最深处的短脚双眼钩虾

目前人类对那些最深的海沟仍所知甚少,尽管如此,深海潜水器、深海探测器和生物捕捉器等先进设备还是助我们揭开了超深渊水带的神秘面纱。深海确实是可怕的,但其可怕来自于环境本身,担心有什么大海怪大可不必。伸手不见五指的黑暗,相当于1000个大气压的水压,常年0-3℃的冰冷海水,贫瘠到只有靠深海热泉和海雪降落维系的生态系统,没有任何大型动物能够在如此恶劣的环境中生存。那些说深海藏匿着未知巨型生物、史前海怪孑遗的谣言可以休矣,水深8400米以下就没有任何鱼类,一万米处5厘米长的小钩虾就是巨无霸了,对生命来说,超深渊的海沟是一片比沙漠还荒芜之地。

7. 海洋有机物形成的化石

无机盐。

一、无机盐对古生物的组织和细胞的结构很重要,硬组织如骨骼和牙齿,大部分是由钙、磷和镁组成,而软组织含钾较多。

二、体液中的无机盐离子调节细胞膜的通透性,控制水分,维持正常渗透压和酸碱平衡,帮助运输普通元素到全身,参与神经活动和肌肉收缩等。

三、古生物死后,没有被其他动物吃掉,而是迅速被埋在地下,与地下丰富的无机盐、碳酸钙、二氧化硅、黄铁矿等进行化学置换,久而久之遗体内腐烂的骨骼会被这些无机盐取代,形成化石。

四、在陆地上,只有碰巧发生沙尘暴、火山爆发等情况,古生物被沙尘和灰土迅速掩埋,或古生物碰巧在湖泊、河流、沼泽等埋藏条件较好的环境中死亡,由于河流湖泊的沉积作用被迅速掩埋,才会形成化石。

因此,只有很少的古生物遗体能保存为化石。

8. 海洋有机生物

1、我国拥有海洋生态系统有滨海湿地生态系统、珊瑚礁生态系统、上升流生态系统和深海生态系统。

2、滨海湿地生态系统:按国际湿地公约的定义,滨海湿地的下限为海平面以下6米处(习惯上常把下限定在大型海藻的生长区外缘),上限为大潮线之上与内河流域相连的淡水,或半咸水湖沼以及海水上溯未能抵达的入海河的河段。

3、上升流生态系统:在上升流海域由特定的生物及周围的环境构成,食物链较短、生产力很高的生态系统。

4、珊瑚礁生态系统:珊瑚礁被称为海洋中的“热带雨林”是海洋生态系统的重要组成部分。它以不到海底的千分之二的覆盖面积,为近30%的海洋鱼类提供了生活的家园。

5、深海生态系统:深海中缺乏阳光,静水压力大,形成黑暗、低温和高压的环境。由于不能进行光合作用,深海生态系统中没有光合作用的植物,没有植食性动物,只有碎食性和肉食性动物、异养微生物和少量滤食性动物。人类已发现的深海生态系统包括:深海海山生态系统、深海化能合成生态系统、深渊生态系统、海底火山生态系统和海底湖泊生态系统等。

9. 海洋有机质

从海岸向外,到深海大洋区之问的区域,人们称它为大陆边缘地区。这里有水深不到200米的大陆架浅水区,还有大陆架到深海之间的一段陡坡,水深在200~3000米之间,称为“大陆坡”。经过近百年的海上石油勘探,人们发现在大陆架浅水区蕴藏着丰富的油气资源,而且在大陆坡,甚至在小型的海洋盆地等深水海域也都找到了藏油的证据。据调查,海底石油约有1350亿吨,占世界可开采石油储量的45%。举世闻名的波斯湾是世界上海底石油储量最丰富的地区之一。在我国的南海、东海、黄海和渤海湾,也都先后发现了油田。海底石油资源如此丰富,那么它是如何来的呢?要搞清这个问题,还得从几千万年甚至上亿年前的历史地质时期谈起。海底石油在漫长的历史地质时期中,地球上的气候,有的时期比现在温暖湿润,有的时期比现在寒冷干燥。在温暖湿润的地质时期,由于大陆架浅水区气候温和,阳光充足,光线能够透过浅浅的水层照射到海底,加上江河里带来大量的营养物质,水质肥沃,海洋藻类生物在这里大量繁殖。同时,海洋中的鱼类、软体类动物以及其他浮游生物也在这里群集,迅速繁殖。这些生物死亡后,遗体随同江河夹带来的泥沙一起沉积在海底,形成所谓的“有机淤泥”。这样,年复一年,大量的生物遗体和泥沙组成的有机淤泥被一层一层掩埋起来。由于这些地层因某种原因不断下降,有机淤泥越积越厚,越埋越深,最后与外面的空气相隔绝,造成一个缺氧的环境,加上深层处温度和压力的作用,厌氧细菌便把有机质分解,最后形成了石油。不过,这时形成的石油还只是分散的油滴。在地层下,分散的油滴需寻找“藏身之地”。由于气候的变迁,海洋中形成的沉积物有时候颗粒较粗,颗粒问孔隙较大,便形成了砂岩、砾岩;有时候颗粒较细,颗粒问孔隙很小,于是形成页岩、泥岩。在上覆地层的压力作用下,这些分散的油滴被“挤”向多孔隙的砂岩层,成为储积石油的地层;而孔隙很小的页岩层,由于油滴无法“挤”进去,储积不了石油,却成了防止石油逃逸的“保护层”。石油储积在砂岩层中还不具备开采价值,还需经过一个地质构造变形过程,使分散的石油集中在构造的一定部位,这样才能成为可开采的油田。这个过程大致为:原来接近水平的岩层由于受到各种压力的作用而发生变形,形成波浪起伏的形状,向上突起的叫背斜构造,向下弯曲的叫向斜构造;有的岩层经过挤压,形成像馒头一样的隆起,叫穹隆构造。在岩层受到巨大压力而变形的同时,含油层中比重小的石油由于受到下部地下水的浮托,向向斜构造岩层或穹隆构造岩层的顶部汇集,这时石油位于上部,而处在中间、下部的则是水。具有这种构造的岩层就像一个大脸盆,把汇集的石油保存起来,成为储藏石油的大“仓库”,在地质学上叫做“储油构造”,这才有真正的开采价值。

10. 海洋有机物的构成物质

由海洋有机物形成的液态化石燃料,可以作为燃料和塑料工业原料的是——石油

下一篇:男子在海洋里冲浪(在海上冲浪的人叫什么)
上一篇:华润国际海洋楼盘(华润国际海洋智区售楼处电话)
Baidu
map