1. 船用雷达波段都是正传,就是顺时针转 装于船上用于航行避让、船舶定位、狭水道引航的雷达,又称航海雷达。当能见度低时,船用雷达能提供必需的观察手段。船用雷达一般工作于X波段或S波段,少数工作于C波段或Ka波段。发射功率一般在几千瓦至几十千瓦之间。 装载于船舶上,具有导航和防撞等功能的雷达称作船用雷达,也称船舶雷达。在这种雷达所能探测到的距离内,对于海岸、护堤、岛屿、礁石、冰山、浮标、来往 的船舶等的距离和方向,都可测量 2. 船用雷达波长雷达波即不是光波也不是声波,雷达波属于超短波。 雷达波的波长在几米到几毫米之间,属于超短波。 这是因为,波长越短,衍射现象越弱,定向性越好,可以认为雷达波是沿直线传播的。 定向性至关重要,否则无法确定目标。同时,波长越短,天线反射器越小,越能增大雷达的机动性。 波长越短,发射的脉冲就越强,反射的回波脉冲也越强,可提高探测的灵敏度。 3. 船用雷达波段是什么自组织时分多址接续(SOTDMA)”方式进行信息交换。 一、AIS系统的组成 一个典型的AIS 系统由两大分系统组成,一个是岸基AIS 系统, 再是船用AIS 设备,岸基AIS 系统比较复杂,典型的AIS 岸基系统是由一定数量的AIS 基站和 AIS 中心组成,系统通过各种方式与VTS 中心,船舶报告系统、港口信息网、海事系统以及船 舶调度等网络相连接,同时也可以与相关航运公司联系,提供相应的信息服务,使上述主管部门 及时得到所有船舶的动态,使航运公司了解到本公司船舶的位置。 AIS 中心也可以与互联网相连,使用户范围进一步扩大,通过设置一定的权限范围,各用户 可以在自己的权限范围内查看相应的船舶信息,得到相应的服务。 AIS 中心之间可以相互连接,进行信息交换,各AIS 中心连接成网,在一个国家和地区范围 内,就可以实时了解沿岸所有船舶的动态,这对船舶航行管理、船舶追踪以及防止海洋污染具有 非常重要的意义。 AIS 船用设备,我们将在下面做详细讨论。 二、AIS船用设备的组成 一个典型的AIS 船用设备是由一台VHF 发射机、二台VHF TDMA 接收机、一台VHF DSC 接收机、一台内置GPS 接收机(作为备用)以及AIS 信息处理器、电源和各种必要的外围设备 接口组成。 VHF 收发由系统信息处理器控制,用VHF CH87B、88B 两个国际专用频道自动发射本船的 相关信息,接收周围其它船舶的AIS 信息,频带为25KHZ。 AIS 工作的特点是同时在这两个频率上接收信息,而发射信息一般是在这两个频率上交替进 行,在人工的干预下,也可以用其它的方式发射。此外,主管部门还可以指配AIS 的区域性频 率,AIS 设备应在指定的区域性频率上工作。 VHF DSC 接收机的主要目的是接收岸台的频率控制信息,实现AIS 工作频率在不同区域的 自动切换,当接收到岸台的频率信息后,AIS 设备将自动地将频率转换到岸台的工作频率上,例 如,当我们到达美国水域时,AIS 设备就在DSC 信息的控制下,自动地将工作频率从通用频道 转换到28B 频道。 船舶AIS 的GPS 信号通常情况下是由船舶GPS 接收机提供,AIS 设备自带的GPS 接收机主 要是作为备用设备接收GPS 信号,当船舶GPS 由于其它原因不能提供信号时,AIS 设备自带的 GPS 接收机才开始工作,其主要作用是确定本船船位,同时接收GPS 时钟信号,而使每个AIS 设备时间一致,实现帧同步。 AIS 信息处理器是AIS 的核心部分,用于存储本船识别码、船名、呼号、船型等静态信息与 船舶吃水、危险货类、航线等航行相关的信息;处理、存储本船动态信息;将存储的本船最新动 态信息、必要的静态信息以及与航行相关的其他信息进行编码后送发射机;对接收来自周围其他 船舶的航行数据进行解码并存储解码后的数据;并对接收到的相关数据进行计算得出CPA、 TCPA、距离和方位;将本船和其他船舶数据以及计算出的数据信息送信息显示器显示。 AIS 的接口主要作用是连接外围设备,目前主要连接的设备有GPS、电罗经、计程仪等设备, 目的是获取本船的船位、航向、航速等重要信息,通过接口可以扩充的设备还有电子海图 (ECDIS)、雷达、远距离识别和跟踪设备、声光报警设备以及外接计算机,主要是实现综合导 航和远距离跟踪和控制等功能,外接计算机主要供引水员使用。 电源部分主要为AIS 设备提供所需的电源,目前一般使用直流电源。 三、工作原理 船舶配备了AIS 设备以后,设备一方面需要向外发送本船的相关信息,同时也要接收在VHF 有效作用距离之内其他船舶的信息。接收到的信息一方面用文字的方式表示出来,另一方面可以 形象地用雷达图表示,AIS 船舶全部用三角符号“△”表示,直观地显示船舶的相对位置,和运 动方向,在电子海图上,可以用矢量线表示船舶的速度,必要时利用尾迹线表示船舶航行的痕迹, 船位数据取自GPS 乃至差分GPS,其精度很高。要是在AIS 设备上选择一个目标或者在电子海 图中从船舶标志处用鼠标点击一下,便可瞬时显示对应的船名、呼号、MMSI 注册号以及航向、 航速、CPA、TCPA 等重要的航行信息,驾驶员了解了这些信息后,就可以非常方便地判断周围 其它船舶的运动情况,确保航行安全,同时在进行相互通信可以直呼其船名,信息交流非常方便。 AIS 工作在VHF 航海频段,国际电信联盟1997 年无线电大会指定了161.975MHz(87B 频道) 和162.025MHz(88B)频道二个VHF 频率作为AIS 工作频道。就完成通信而言,一个无线电频道 已经足够了,但是为了防止干扰和转换频道时造成通信损失,每个AIS 站均使用二个频道进行 收发。 除人工干预外,AIS 应答器都工作在自主连续模式,发射方式是9.6Kb GMSK FM 带宽25KHz 或者12.5KHz 数据采用HDL 包协议。 根据船— 船通信这样的实际条件,AIS 使用了自组织时分多址技术(SOTDMA)这一核 心技术。根据IMO 的AIS 性能标准对要求船舶报告的容量的要求,系统每分钟应有2000 个时 隙,但实际上,系统的设计是每分钟4500 时隙,每一帧60 秒,即每60 秒钟建立2250 个时隙, 每个时隙约26.67ms, 可传输256bits 的信息,每个AIS 站的船舶报告根据信息的容量自动选择一 到三个时隙,分一帧和数帧发射或接收AIS 信息。系统实时动态地调整信道分配 具体工作中,在一个AIS 站开始发送之前先要对当时信道的使用状态观察一段时间,搞清 时隙使用情况,然后可以选择未占用的时隙,标明需占用的帧数,再发送数据,各AIS 站持续 地保持同步,可避免发送时间重叠,新加入AIS 站也不会发生冲突。在数据链负荷超过理论值 的90%时,新加入的站可以占用距离最远的台所遥的时隙,从而保证系统有很的过载能力。 自组织分时多址技术可以自动解决本台与其他台的竞争问题,即使系统过载、通信仍能保持 完好;系统每分钟可以处理2000 个以上报告,本船接收到的数据间隔2 秒可以更新一次。 AIS 对DSC 向下兼容,因此岸基的GMDSS 系统可以对装备AIS 的船舶进行识别、跟踪和 控制。 AIS 采用VHF 频段,它的覆盖距离与其他VHF 设备一样,电波直线传播。距离取决于天线的高 度,在海上通常为20 海里左右。由于其波长较雷达长,波的绕射以及衍射作用较强,所以“可 视距离”较雷达要好,在地面上的障碍物不太高的情况下,能“看到”障碍物或岛屿背面的AIS 站。借助于中继站,可以显著扩大船台和VTS 站的覆盖范围。 AIS的应用分析: 1、自动发送本船信息,包括本船静态、动态和航次信息; 2、自动接收装有AIS 设备它船或VTS 岸站的AIS 信息; 3、提供本船操纵信息,以提供VTS 或其它船舶追踪或避让; 4、船—船、船—岸之间的短信息交流; 5、提供其它辅助信息以避免碰撞发生; 6、可以与INMARSAT 移动站、INTERNET 连接,实现信息的远距离传输和管理。 应当注意到,IMO 为了船舶安全,建议最好不要把AIS系统与国际INTERNET连接。 4. 船用雷达波段怎么调是雷达都有盲区,包括低空盲区和顶空盲区,和船没有关系 看你装的位子,在船头的话盲区相对较小,不可能没有盲区的 当然是因为地球曲率了。 因为它是放在船的高端的,它的雷达波是直销传播的,但是地球是圆的,另外超低空飞行时也有盲区,当然这是离船比较近时才有的! 5. 船舶导航雷达的工作波段航空的频率是高频2-30MHz和甚高频118-135.975MHz。 航空频率是: 中低频:ADF导航190-550kHz。 甚高频:甚高频导航VORILS108-117.95MHz,仪表着陆系统航向信标LOC108-111.95MHz 指点信标MK75MHz。 特高频:下滑信标329.15-335Mhz 测距机DME1.25-1150MHz 空中交通管制应答机ATC1090MHz GPS导航1575.42MHz。 超高频:卫星通信L波段1.5/1.6GHz 气象雷达3GHz 无线电高度表RA4.3GHz。 6. 船用雷达波段在哪里查雷达波段(radar frequency band) 指雷达发射电波的频率范围。其度量单位是赫兹(Hz)或周/秒(C/s)。大多数雷达工作在超短波及微波波段,其频率范围在30~300000兆赫,相应波长为10米至1毫米,包括甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)4个波段。在1吉赫频率以下,由于通信和电视等占用频道,频谱拥挤,一般雷达较少采用,只有少数远程雷达和超视距雷达采用这一频段。高于15吉赫频率时,空气水分子吸收严重;高于30吉赫时,大气吸收急剧增大,雷达设备加工困难,接收机内部噪声增大,只有少数毫米波雷达工作在这一频段。 7. 船用雷达量程光电雷达 MDC-2041/2040(4kw) 船用导航雷达 雷达特性: 10.4寸纵向彩色显示液晶屏 使用针织的跟踪功能和柯登的独特技术指标显示 特有的双量程显示雷达功能,使你享有长短双量程同事分屏显示的便捷 多大100个AIS个50个ATA(自动跟踪仪)功能(选配) 型号: MDC-2041 MDC-2040 天线类型: MDC-2041(辐射器罩) MDC-2040(100cm/130cm) 输出功率:4KW 量程范围:48海里 重量: MDC-2041(18.1kg) MDC-2040(29.1kg) 8. 船用雷达波段为什么是S和X船用雷达能扫描识别到三四十公里远的距离,这要根据船体雷达放置的高度,高度越高,扫描的距离也就越远。 这是因为地球是球形的,球形的就有一定的弧度,而雷达波是直线传播,所以雷达波在传播的过程中,会被地球自身的弧度所遮挡,也就探测不了太远的距离 9. 船舶雷达天线船顶上转动的那个横杆是船舶航海雷达天线。 航海雷达(Marine radar)是装在船上用于航行避让、船舶定位、狭水道引航的雷达,亦称船用雷达。航海雷达在能见度不良时为航海人员提供了必需的观察手段。它的出现是航海技术发展的重大里程碑。 雷达早期用抛物面反射天线,现已为波导隙缝天线取代。天线辐射以水平线性极化为主;为提高雷达在雨雪中的探测能力,有的天线装有圆极化装置。发射和接收一般合用一个天线,由双工器(收发开关)转换。天线由马达驱动,作360°连续环扫。为保证方位测量精度和方位分辨力,天线波束水平宽度要窄,很多3厘米航海雷达在1°以内。为防止船舶摇摆时丢失目标,波束垂直宽度较宽,约为25°。 10. 船用雷达频率雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。 其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。 测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。 测量目标方位是利用天线的尖锐方位波束测量。 测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。 测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。 雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。 从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。 当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。 11. 船用导航雷达工作频段1.1 无线电频率 雷达设备工作的无线电频率在任何时刻均应在国际电信联盟颁发的“无线电规则”所规定的范围内。 2. 目的 雷达设备应能相对于本船的其他水面船舶和障碍物、浮标、海岸线以及导航标志的位置,这将有助于导航和避碰。设备的安装应满足该设备所规定的性能标准。3. 性能要求 所有雷达设备均应满足下述最低要求。 3.1 作用距离 在正常传播条件下,当雷达天线架设在海面以上15米高度时,在无杂波的情况下,设备应清楚地显示出: 3.1.1 海岸线 高度为60米的陆地,距离为20海里。 高度为6米的陆地,距离为7海里。 3.1.2 水面目标 对5000吨(总吨,下同)的船舶,不管其首向如何,距离为7海里。 对10米长的小船,距离为3海里。 对有效反射面积约10平方米的导航浮标之类的目标,距离为2海里。 3.2 显示 3.2.1 雷达设备应提供首向向上非稳定相对平面位置显示,在没有外部放大装置的情况下,其有效显示直径不小于下列规定: 3.2.1.1 500 吨到1600 吨以下的船舶为180毫米; 3.2.1.2 1600 吨到10000 吨以下的船舶为250毫米; 3.2.1.3 10000 吨和10000 吨以上的船舶,一台雷达的显示器为340毫米,另一台雷达的显示器为250毫米。 3.2.1.4 若放大后的显示精度在本标准的精度范围内,也可以使用光学放大装置。 3.2.1.5 与雷达导航或避碰无关的任何信息只允许显示在屏幕有效直径的外面。 3.2.2 设备应供应下列两组显示量程中的任一组: 3.2.2.1 1.5、3、6、12、24海里以及一档不小于0.5海里且不大于0.8海里的量程组; 3.2.2.2 1、2、4、8、16、32海里的量程组。 3.2.3 设备还可以提供其他量程。 3.2.3.1 所提供的其他量程应比第3.3.2条所要求的最小量程更小,或者比第3.3.2条所要求的最大量程更大。 3.2.3.2 不应提供扫描起点延迟的量程。 3.2.4 设备在任何时刻都要清楚地指示所用的量程及两距标环的间距。 |
船舶PSC(船舶PSC含义是什么) |
2024-03-16
|
查看详情 >> |
PPG推出PPG NEXEON 810涂料,可使船舶保持更高的速度 |
2024-03-18
|
查看详情 >> |
昨日,外高桥造船开启汽车运输船建造新阶段 |
2024-03-16
|
查看详情 >> |