江南官网app 为船舶与海洋工程行业提供技术支持与动力,是船舶行业最大门户分类网站
全国: | 上海:
水上物流产品分类
主页 > 净化设备 > 什么是造船精度管理(船舶建造精度管理)
什么是造船精度管理(船舶建造精度管理)
来源:www.ascsdubai.com    时间:2022-11-14 11:20    点击:136   编辑:admin

1. 船舶建造精度管理

船舶定位师主要负责船舶建造过程中分段总段的合拢位置的确定及精度控制。船舶定位有两种含义:一种是用导航仪表确定船在地球表面的坐标点,或不参考原先任何位置基准独立确定船的精确位置;另一种是指使船舶或浮动平台保持在设定位置或方位上的一种定位方法。

2. 船舶建造精度管理的概念及作用是?

船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。

2 GPS与雷达的定位与导航功能

2.1 定位功能

船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。 GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。

2.2 导航功能

30m左右的中型引航船。考虑到天津港冬季多大风,

锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。 无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。

3.3 对速度和操纵性能的要求 引航船在速度上不能低于16kn。 高速艇一般不能低于20kn。 从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。

3.4 要配置先进的雷达及通信设备

另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。

以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。

普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。 GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。

3 GPS的避碰功能

船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状况设置报警范围。在航行中,驾驶员可以随时检查这些物标相对于本船的距离和方位。一旦船舶进入所设定的报警范围的边界,GPS导航仪立即发出报警,驾驶员作出避让措施。

4 GPS辅助雷达定位

雷达定位的难点是正确识别物标,对于不大熟悉雷达观测的驾驶员更是如此。若用雷达观测几个比较接近的非独立物标,由于物标回波图像边缘扩大、失真等原因,这些物标的回波图像难以清楚分开,因而观测雷达图像找不出与海图所对应的物标,或把一物标回波图像错认为另一物标的回波图像,获得错误的雷达船位或造成不能允许的船位误差。又由于在海图上查找雷达回波反射点要耽误时间,因而定位是不连续、不实时的,获取船位的时间滞后于实测船位的时间。滞后时间的大、小与观测者对雷达观测的熟练程度有关。

普通的GPS导航仪,除了直接存贮任一位置的经、纬度以外,还可输入当前位置到达雷达测量位置的距离、方位,计算并显示物标的所在位置的经、纬度。若把雷达测定的物标的距离、方位数据迅速输入GPS导航仪,根据它显示的经、纬度数据,可迅速在海图上找到对应的物标,由此作出雷达船位。用此方法取得的雷达船位比用常规法作得的船位准确、可靠,避免因识别反射物标错误而引起雷达船位错误或偏差,标绘所用的时间也可明显缩短。如果将雷达测定的距离和方位数据通过接口和控制装置输入GPS导航仪,导航仪就不需人工干预直接显示相应物标所在位置的经、纬度。

5 锚位监视功能

在船舶锚泊时,船用雷达可通过测定陆标的方位和距离监视本船的锚位偏离状况,也可通过测定到达他船的方位和距离监视他船的漂移状况,一旦发现本船和他船走锚,便可采取相应的措施避免发生事故。GPS的锚位监视是以锚位点为中心,输入的设定距离为半径,一旦天线所在位置超出此范围,即被认为走锚而发出报警。监控半径大、小的选择要根据GPS导航仪的定位精度、周围环境及船舶状况而定。由于GPS具有较高的定位精度,可以减小设置监控半径,提高监控灵敏度。若采用DGPS可进一步减小监控半径,提高监控灵敏度。通常,GPS导航仪的最小设置监控半径为0.1n mile。 虽然GPS不能监视他船的锚移状况,但对本船的锚移监视具有不需通过测定物标定位、监视灵敏度高、快速实时等优点。GPS与雷达相结合的锚位监控手段,对防止大风造成的损失可起到很大的作用。

6 DGPS测定船用雷达测向、测距误差

7 GPS与雷达配合应用需注意的问题

3. 船舶建造精度管理活动的三个阶段

回转支承轴承又叫转盘轴承,有些人也称其为:旋转支承 、 回旋支承。  英文名字叫: slewing bearing 或 slewing ring bearing 又或 turntable bearing  回转支承,是一种能够承受综合载荷的大型轴承,可以同时承受较大的轴向、径向负荷和倾覆力矩。回转支承轴承一般带有安装孔、内齿轮或外齿轮、润滑油孔和密封装置,因而能使主机设计结构紧凑,引导简便,维护容易。LYTBZ回转支承轴承有无齿式,外齿式和内齿式的四点接触球轴承、双排角接触式球轴承交叉圆柱滚子轴承、交叉圆锥滚子轴承和三排圆柱滚子复合轴承四个系列,其中四点接触球轴承具有较高的静负荷能力,交叉圆柱滚子具有教高的动负荷能力,交叉圆锥滚子轴承的预过盈能使轴承具有较大的支撑刚性和回转精度,三排圆柱滚子组合轴承由于承载能力的提高引向轴承高度,各种力量分别由不同滚道承受,所以同样受力情况下,其轴承直径可大大缩小,因而有使主机更加紧凑的特点是一种高承载能力的回转支承轴承。LYTBZ回转支承轴承广泛用于起重机械、采掘机械、建筑机械、港口机械、船舶机具以及高精度的雷达机械和导弹发射架等设备的大型回转装置上。同时LYTBZ也可以根据用户的具体要求设计、开发、生产各种特殊结构回转支承轴承。

4. 船舶建造精度管理技术

调整方法是:

  1、驾驶室及其4块舵角表带有调光功能,其中两翼舵角表自带调光器,驾驶室内的2块舵角表调光电位器按分压式接法连接。

       2、通电调试前将所有舵角表的接线端子拆除,然后通电测量确认DC24V电源线和舵角信号线,连接DV24V电源线,舵角信号线保持暂时悬空。

       3、用信号发射器校验6只舵角表。

       4、舵角发讯器和信号放大器精度高且很少发生故障,可直接进行系统联调。整个系统通电,舵机舵角放在位,打开舵角发讯器的顶盖,松开固定转轴的3个螺丝(不必拆下来),转动轴调整到舵角表指示在0°。

       5、转动舵到左舷35°,观察6块舵角表都应该指示在左舷35°。如果有舵角表指示在右舷35°,则反接这些舵角表的信号线使其指示到左舷35°。

6、转动舵到左舷35°、右舷35°,观察6块舵角表的指示情况。若平均度数偏大A,则转舵角至位,调整舵角发讯器量程微调旋钮,调到舵角表指示在左舷9A/7处,然后调整调整舵角发讯器调旋钮,使舵角表指示在位。若平均度数偏小A,则转舵角至位,调整舵角发讯器量程微调旋钮,调到舵角表指示在右舷9A/7处,然后调整调整舵角发讯器调旋钮,使舵角表指示在位。然后再次转动舵到左舷35°、右舷35°,观察6块舵角表的指示情况,若有较大偏差则重复以上步骤调整

5. 船舶建造精度管理的关键技术

宇宙飞船(英语名为space ship ),是一种运送航天员、货物到达太空并安全返回的一次性使用的航天器。它能基本保证航天员在太空短期生活并进行一定的工作。它的运行时间一般是几天到半个月,一般乘2到3名航天员。

世界上第一艘载人飞船是“东方”1号宇宙飞船。它由两个舱组成,上面的是密封载人舱,又称航天员座舱。这是一个直径为2.3米的球体。舱内设有能保障航天员生活的供水、供气的生命保障系统,以及控制飞船姿态的姿态控制系统、测量飞船飞行轨道的信标系统、着陆用的降落伞回收系统和应急救生用的弹射座椅系统。另一个舱是设备舱,它长3.1米,直径为2.58米。设备舱内有使载人舱脱离飞行轨道而返回地面的制动火箭系统,供应电能的电池、储气的气瓶、喷嘴等系统。“东方”1号宇宙飞船总质量约为4700千克。它和运载火箭都是一次性的,只能执行一次任务。

1966年3月17日,“双子星座”8号的宇航员进行了首次太空对接。之后不久,由于飞船损伤系统突然失灵,宇航员们不得不进行紧急着陆处理。宇航员尼尔-A-阿姆斯特朗和戴维-R-斯考特在计划为期3天的飞行使命中的第5圈飞行时,操纵其双子星座封舱与阿根纳号宇宙飞船对接成功。半小时后,双子大发了像星号密封舱开始旋转并失去控制。接着,宇宙飞船上12只小型助推火箭中的一只原因不明地起火。宇航员随即将其飞行器与阿根纳号分离,并成功地在太平洋上降落。质量约为4700千克。

宇宙飞船的分类

至今,人类已先后研究制出三种构型的宇宙飞船,即单舱型、双舱型和三舱型。其中单舱式最为简单,只有宇航员的座舱,美国第1个宇航员格伦就是乘单舱型的“水星号”飞船上天的;双舱型飞船是由座舱和提供动力、电源、氧气和水的服务舱组成,它改善了宇航员的工作和生活环境,世界第1个男女宇航员乘坐的前苏联“东方号”飞船、世界第1个出舱宇航员乘坐的前苏联“上升号”飞船以及美国的“双子星座号”飞船均属于双舱型;最复杂的就是三舱型飞船,它是在双舱型飞船基础上或增加1个轨道舱(卫星或飞船),用于增加活动空间、进行科学实验等,或增加1个登月舱(登月式飞船),用于在月面着陆或离开月面,前苏联/俄罗斯的联盟系列和美国“阿波罗号”飞船是典型的三舱型。联盟系列飞船至今还在使用。

宇宙飞船技术要求

虽然宇宙飞船是最简单的一种载人航天器,但它还是比无人航天器(例如卫星等)复杂得多,以至于到目前仍只有美、俄、中三国能独立进行载人航天活动。

麻雀虽小,五脏俱全。宇宙飞船与返回式卫星有相似之处,但要载人,故增加了许多特设系统,以满足宇航员在太空工作和生活的多种需要。例如,用于空气更新、废水处理和再生、通风、温度和湿度控制等的环境控制和生命保障系统、报话通信系统、仪表和照明系统、航天服、载人机动装置和逃逸生系统等。

当然,掌握航天器再入大气层和安全返回技术也至关重要。尤其是宇宙飞船,除了要使飞船在返回过程中的制动过载限制在人的耐受范围内,还应使其落点精度比返回式卫星要高,从而及时发现和营救宇航员。前苏联载人宇宙飞船就曾因落点精度差,结果使宇航员困在了冰天雪地的森林中差点被冻死。目前,掌握航天器返回技术的国家只有美国、俄罗斯和中国。人上天有三个条件,除要研制出载人航天器外,还必须拥有运载力大、可靠性高的运载工具;应弄清高空环境和飞行环境对人体的影响,并找到有效的防护措施。

天高任船飞。未来的宇宙飞船将朝三个方向发展:有多种功能和用途;返回落点的控制精度提高到百米级的范围以内;返回地面的座舱经适当修理后可重复使用。

6. 船舶建造精度管理技术定义

回转支承轴承又叫转盘轴承,有些人也称其为:旋转支承 、 回旋支承。  英文名字叫: slewing bearing 或 slewing ring bearing 又或 turntable bearing  回转支承,是一种能够承受综合载荷的大型轴承,可以同时承受较大的轴向、径向负荷和倾覆力矩。回转支承轴承一般带有安装孔、内齿轮或外齿轮、润滑油孔和密封装置,因而能使主机设计结构紧凑,引导简便,维护容易。LYTBZ回转支承轴承有无齿式,外齿式和内齿式的四点接触球轴承、双排角接触式球轴承交叉圆柱滚子轴承、交叉圆锥滚子轴承和三排圆柱滚子复合轴承四个系列,其中四点接触球轴承具有较高的静负荷能力,交叉圆柱滚子具有教高的动负荷能力,交叉圆锥滚子轴承的预过盈能使轴承具有较大的支撑刚性和回转精度,三排圆柱滚子组合轴承由于承载能力的提高引向轴承高度,各种力量分别由不同滚道承受,所以同样受力情况下,其轴承直径可大大缩小,因而有使主机更加紧凑的特点是一种高承载能力的回转支承轴承。LYTBZ回转支承轴承广泛用于起重机械、采掘机械、建筑机械、港口机械、船舶机具以及高精度的雷达机械和导弹发射架等设备的大型回转装置上。同时LYTBZ也可以根据用户的具体要求设计、开发、生产各种特殊结构回转支承轴承。

7. 船舶建造精度管理规范

确定船舶的位置,首先用导航仪表确定船在地球表面的坐标点或不参考原先任何位置基准独立确定船的精确位置

船舶定位有两种含义:一种是用导航仪表确定船在地球表面的坐标点,或不参考原先任何位置基准独立确定船的精确位置;另一种是指使船舶或浮动平台保持在设定位置或方位上的一种定位方法。20世纪50年代以来,随着海洋技术的发展,出现了动力定位技术。动力定位就是通过自动控制系统,使船舶或浮动平台利用其自身的动力抵御海上风、波浪和海流的影响,自动地就为并保持在设定位置或方位上的一种定位方法。

8. 船舶建造精度管理的关键技术有哪些

1.在柴油机装配之前,它的全部零件必须经过仔细的检查。检查的主要内容包括零 部件的尺寸精度,形状及位置公差、表面粗糙度等必须符合有关技术要求,防止有差错。 对于一些重要零件如曲轴、活塞和连杆更应仔细检查。

2.柴油机有的零件,尤其精密件,应经过清洗使工作表面达到清洗程度,在清洗中 发现零件有局部缺陷,应进行必要的整修,如用刮研,锉修方法加以消除后,再送去装

3.对于某些密封受压的零件(例如气缸盖、气缸套、活塞等),其受压空间或工作表面应经过液压试验,其试验部位和压力,可查有关柴油机说明书要求。

4.装配过程应严格按装配技术要求进行,并在每一顺序完工后进行检查验收,例如 装配间隙要求,必须符合“标准”要求,有时应采取各种措施,进行反复调整或修正, 达到“标准”要求为止,绝不能马虎从事,以免影响机器运行质量。

5.装配过程中,金属碎屑及其它杂物应清除干净,严防杂物遗留在机器部件中,同 时,所有螺栓、螺母应拧紧到规定要求,以免造成不必要的事故。 准备好酒该安装主机了。 主机机座的准备主机是通过垫片或减振器安装在船体基座上的,基座是与船体直接相连的支承座。 根据不同的机型,基座一般有两种形式。对于大型低速柴油机,没有单独的基座,机舱 双层底是由加厚的钢板焊接而成,主机的基座就落位在加厚的钢板上。中小型柴油机, 通常带有突出的油底壳,因此在双层底上还要焊接一个由型钢和钢板焊接起来的金属构 件。主机安装前,基座的准备包括:基座位置及外形的检验,主机紧固螺栓孔与固定垫 片位置的确定和基座上平面的加工。

9. 船舶建造精度管理的对象

船体主尺度是船体外形大小的基本量度,即船的长度、宽度和深度。在船体型线图和基本结构图上标注为总长、垂线间长、最大宽度、型宽和型深等数值均为船体主尺度,船体主尺度是船体性能设计的关键尺寸,也是签订合同、进行基本设计、详细设计和生产设计的主要依据。

在船体建造各工序施工时,为确保船体主尺度精度要认真地制定工艺措施。

Baidu
map