1. 船舶压载水自压
船不同,原理同!进:依次开海水阀,压载泵的进出口阀,压载舱总阀,压载舱阀(比如3号舱)
;出:依次开压载舱阀(比如3号舱),压载舱总阀,压载泵的进出口阀,排舷外伐(排到海里).(压载泵,总用泵,消防泵基本上都能互换使用,都有连通管路和阀)
2. 船舶压载水压入方法
需要重点检查四个关键方面,即对船舶证书、船舶完整稳性计算书及装载手册等船舶证书和技术资料的检查,对压载数量及位置的检查,对压载的可靠性检查和对水压载的检查,压载是保持船体平衡的关键,检查时需对时船上的压载数量及位置,船舶证书及技术资料进行对比
3. 船舶压载水自压多少
船舶在加装压载水时,从进水总管中分流的一部分海水流经电解槽(ECU),电解槽通以低压直流电,直接电解海水产生次氯酸钠,利用次氯酸钠的强氧化性杀灭海水中的浮游生物、病原体和细菌,从而避免船舶所携带的压载水对目的港水域的污染。
然后电解产生的高浓度的次氯酸钠溶液(约1500~2000ppm)注入压载水的进水总管,迅速与压载水混合,最终浓度达到5-15ppm的水平。
4. 船舶压载水压入和排放方法
船舶换证检验为满足船舶适航证书的颁发,进行的检验为满足船舶适航证书的颁发,进行的一种检验。包括初次检验,年度检验,中间检验,换证检验。中文名船舶换证检验适用领域船舶适航证书的颁发船体、轮机、电气设备和机舱自动化
(1) 本章4.4.1规定的项目;
(2) 在第二次及以后的换证检验时,按本局《河船法定营运检验技术规程》的规定对船体结构进行厚度测量;
(3) 在第二次及以后的换证检验时,对双层底舱、边舱(如有时)、首尾尖舱、燃油舱进行水压试验;
(4) 对锚设备、舵设备和舱底水系统作效用试验;
(5) 对水密门和水密舱口盖作冲水试验;
(6) 对锅炉进行内外部检验,并进行水压试验;
(7) 检查中间轴、推力轴、螺旋桨轴及其轴承、法兰等,以及螺旋桨的技术状况;
(8) 对于油船,在第二次及以后的换证检验时,尚应对压载舱、空舱、管隧进行水压试验,必要时应对货油舱进行水压试验或气密试验;
(9) 对于滚装货船、Ⅰ型客滚船、Ⅱ型客滚船、车客渡船,在换证检验时尚应对车辆跳板的升降装置和控制系统进行检查和效用试验。船舶消防、救生设备、航行设备和信号设备4.5.2.1 船舶消防、救生设备、航行设备和信号设备的换证检验包括:
(1) 本章4.4.2规定的项目;
(2) 对水灭火系统作效用试验;(3) 对失火手动报警按钮系统作效用试验,对自动探火和灭火报警系统进行模拟试验;
(4) 对压力水雾系统(设有时)的管系及喷嘴作畅通试验;
(5) 对救生艇(舢板)的空气箱(如有时)进行检查和密性试验;
(6) 对救生艇(舢板)的降落装置作降落试验;
(7) 对机动救生艇的艇机作起动和运转试验。无线电通讯设备4.5.3.1 无线电通信设备在换证检验时,应按本章
4.2.2.3 的要求进行核查和检验证书、配备的所需文件的检查4.5.4.1 现有证书,船上配备的所需文件的检查与本章
4.3.4 相同。证书的签发4.5.5.1 换证检验合格后应签发新的内河船舶适航证书
5. 船舶压载水压排技巧
有专用的压载舱,压载泵,压载管路。
一般启动时需要与机舱联系,确定辅机负载能力。机舱人员会不定时检查设备运行情况。
启动压载泵前,需确认各阀处于打开或关闭状态。
所有压排水是为了确保船舶安全。作业前要先进行一系列计算,确保船舶在作业过程中、航行中,受力情况均在允许范围内,稳性符合要求,在作业中也需进行灵活调整。
排水作业:
船舶空载时,一般为压载状态,在重力作用下自排水,这一阶段不需用泵。
当水无法依托重力排出后就要通过泵排水。查管路图,确认需要打开的阀,将其打开,检查其他阀门处于关闭状态。启动泵,进行排水作业。排水时,要注意压载水变化和泵吸口出口的压力变化,灵活调节阀门,防止水排空后损伤泵机。
压载舱中的压载水所剩不多时要进行扫舱作业,注意泵的压力变化,不要超出规定范围。有人进行测量压载舱水位工作,当某个舱的水被排空后,进行下一个舱的操作。所有舱室扫舱完成后,按要求关闭泵,开启或关闭阀门。
压水作业:压水也有重力作用下压水。
泵压水:检查管路,确认阀处于所需状态。启动泵,压水。有些船舶可以在室内观察舱内水位变化,有些船舶的因种种原因无法观察,需派人去各压载舱测量孔测量。当某舱到达所需水位时,即可打开另一舱室阀门,关闭此舱的阀门,进行下一舱的压水作业。所有操做完成后,为避免损伤泵,需先打开一排海阀,减轻泵的压力,关闭通往压载舱的阀门,然后关闭泵,最后关闭排海阀。检查管路阀门处于规定状态。
还有就是换水,更换压载水作业:大型散货船一般为满溢法(一般用于货舱压载舱)或排空重注法(一般用于船头船尾压载舱)。
6. 船舶压载水压边舱底舱怎么会进水
潜水艇工作原理是基于“浮性定律”(或阿基米德定律)。任何物体在液体中都会受到浮力的作用,浮力的大小等于物体本身所排开液体的重量。当物体的重量大于浮力时它就会下沉;小于浮力时就会上浮;等于浮力时就会悬停在液体中,这两个力大小相等,但方向正好相反。潜艇在水中时,这两种力也都会作用在潜艇上。如上所述,潜艇本身的重量叫做重力,潜艇入水部分所排开海水的重量叫做浮力,要使潜艇下潜只要使它的重量大于它的浮力就行了,那么怎样增加潜艇的重量呢?在潜艇上都设有压载水舱,只要往空的压载水舱里注水,潜艇就变重了,这时潜艇的重量就会大于它排开水的重量(即大于浮力),潜艇就逐渐下潜。当潜艇正常上浮时,用高压空气分步骤把压载水舱里的水挤出去,使之充满了空气,使潜艇在水下的重量减轻了,当潜艇的重量小于它同体积的水的重量时(即小于浮力时),潜艇就会上浮,直至浮出水面。另外,也可以采用操舵的方法将航行中的潜艇调整到距水面30米的安全深度(安全深度是为了防止与水面船只碰撞的限制深度),继续上浮到10—30米深度时是危险深度,上浮到10米左右时属于潜望深度,到达潜望深度后就可以排水上浮了。以上来自网络!
7. 船舶压载水压水顺序
一、重力式下水 重力式下水又分纵向涂油滑道下水、纵向钢珠滑道下水和横向涂油滑道下水三种,这也是主要的重力式下水方式。
1、纵向涂油滑道下水是船台和滑道一体的下水设施,其历史悠久,经久耐用。
下水操作时先用一定厚度的油脂浇涂在滑道上以减少摩擦力,这种油脂以前多采用牛油,现在多使用不同比例的石蜡、硬脂酸和松香调制而成。然后将龙骨墩、边墩和支撑全部拆除,使船舶重量移到滑道和滑板上,再松开止滑装置,船舶便和支架、滑板等一起沿滑道滑入水中,同时依靠自身浮力漂浮在水面上,从而完成船舶下水。这种下水方式适用于不同下水重量和船型的船舶,具有设备简单、建造费用少和维护管理方便的优点;但也存在较大的缺点:下水工艺复杂;浇注的油脂受环境温度影响较大,会污染水域;船舶尾浮时会产生很大的首端压力,一些装有球鼻艏和艏声呐罩的船舶为此不得不加强球首或暂不装待下水后再入坞安装;船舶在水中的冲程较大,一般要求水域宽度有待下水船舶总长的数倍长度,必要时还要在待下水船舶上设置锚装置或转向装置,利用拖锚或全浮后转向的方式来控制下水冲程。
2、纵向钢珠滑道下水
这种方式是用一定直径的钢珠代替油脂充当减摩装置,使原来的滑动摩擦变为滚动摩擦,降低滑板和滑道之间的摩擦阻力,钢珠可以重复使用,经济性较好。钢珠滑道下水装置主要由高强度钢珠、保距器和轨板组成。保距器每平方米装有12个钢珠。木质的滑板和滑道上各有一层钢制轨板以防被钢珠压坏,在滑道末端设有钢珠网袋以承接落下的钢珠和保距器。这种下水方式使用启动快,滑道坡度小,滑板和滑
道的宽度也较小,钢珠可以回收复用,其下水装置安装费用和使用费用都比油脂滑道低。而且不受气候影响,下水计算比较准确。但初始投资大、滑板比较笨重、振动大。
3、横向涂油滑道下水
这种方式是指船舶下水是按船宽方向滑移的,不是船尾首先进入水中而是船舶的一舷首先入水。这种方式分为两种,一种是滑道伸入水中,先将船舶牵引到楔形滑板上,再沿滑道滑移到水中;另一种是滑道末端在垂直岸壁中断,下水时船舶连同下水架、滑板一起堕入水中,再依靠船舶自身浮力和稳性趋于平衡全浮。船舶跌落高度为1-3米。这种方式由于同时使用的滑道多,易造成下水滑移速度不一样,造成下水事故,而且跌落式下水船舶横摇剧烈,船舶受力大,对船舶横向强度和稳性要求较高。
二、漂浮式下水漂浮式下水是一种将水用水泵或自流方式注入建造船舶的大坑里依靠船舶自身的浮力将船浮起的下水方式。最常见的是造船坞下水。
漂浮式下水使用的船坞分两种,即造船坞和修船坞,区别在于造船坞比较宽浅而修船坞比较深。
造船坞是用来建造船舶和船舶下水的水工建筑物,有单门的,双门的和母子坞等多种形式,基本结构是由坞底板、坞墙、坞门和泵房等组成。坞门本身具有压载水舱和进排水系统,安装到位后将水压入坞门水舱内,坞门会下沉就位,就在坞外海水的压力下紧紧压在坞门口,再将坞内的水抽干就可以在坞内造船了。
船舶建造完成后,通过进排水系统将坞外水域的水引入坞内,船舶依靠浮力起浮,待坞内水面和坞外一致时就可以排出坞门内的压载水起浮坞门并脱开坞门,然后将船舶用拖船拖出船坞,坞门复位进入下一轮造船。
造船坞下水是一种简便易行的下水方式,其安全性、工艺简单性比较好。可以有效地克服倾斜船台头部标高太大的缺点,减低吊机起吊高度,还可以避免重力式下水所要求的水域宽度,可以引入机械化施工手段。因此,尽管造船坞造船方式初始投资较大,但是仍是建造VLCC的唯一手段。
三、机械化下水
1、纵向船排滑道机械化下水
船舶在带有滚轮的整体船排或分节船排上建造,下水时用绞车牵引船排沿着倾斜船台上的轨道将船舶送入水中,使船舶全浮的一种下水方式。分节式船排每节长度是 3-4米,宽度是骨干产品船宽的80%,高度在0.4米到0.8米间。由于位于船艏的那节船排要承受较大的首端压力,因此要特别加强其结构,因此
分为首节船排和普通船排两种。由于船排顶面与滑道平行,而且高度只有0.4-0.8米,所以其滑道水下部分较短,滑道末端水深较小,采用挠性连接的分节船排时由于船排可以在船舶起浮后在滑道末端靠拢,则可以进一步降低滑道水下部分长度和降低末端水深。这种滑道技术要求较低,水工施工较简单,投资也较小,而且下水操作平稳安全,主要适用于小型船厂。但由于船排高度小,船底作业很不方便,一次仅适用小型船舶的下水作业。
为提高船排滑道的利用率,可以设置横移坑和多船位水平船台和纵向倾斜滑道组合,可以大大提高纵向船台的利用率。
2、两支点纵向滑道机械化下水
这种下水使用两辆分开的下水车支撑下水船舶,它可以直接讲船舶从水平船台拖曳到倾斜滑道上从而使船舶下水。
这种滑道是用一段圆弧将水平船台和倾斜滑道连接起来,以便移船时可以平滑过渡。具有结构简单、施工方便、操作容易的优点,缺点是由于只有两辆下水车支撑船舶首尾,对船舶纵向强度要求很高,在尾浮时会产生很大的首端压力,因此只适用纵向强度很大的船舶。
3、楔形下水车纵向机械化下水
这种滑道上的下水车架面是水平的或稍有坡度,船舶下水时是平浮起来的,不会产生首端压力,下水工艺简单可靠,适用于较大的船舶下水。把它用横移坑和多船位水平船台连接起来可以提高滑道使用效率,是一种比较理想的纵向机械化下水设施。缺点是下水车尾端过高,要求滑道末端水深较大,因而导致水工施工量大,投资大,且滑道末端易被淤泥覆盖,选用时要充分考虑水文条件。
4、变坡度横移区纵向滑道机械化下水
这种下水方式的横移区由水平段和变坡段两部分组成。侧翼布置有多船位水平船台的横移区,因移船的需要使横移车轨道呈水平状态,故称水平段;变坡度的横移区其轨道只有一组仍为水平,其它各组均带有坡度,这些轨道的坡度能使横移车在横移过程中逐步改变其纵向坡度,最后获得与纵向滑道相同的坡度,故称为变坡段。同时,为使横移车在变坡段仍保持横向水平,带坡度轨道均采用高低两层轨道的方式。
由于横移区具有变坡功能,所以采用纵向倾斜滑道下水。同时,可以在下水滑道纵向轴线处建造一座纵向倾斜船台。通过横移车在水平段实现与水平船台的衔接;在变坡段末端实现与纵向倾斜船台、下水滑道的衔接,使一种下水设施可以供两种船台使用。而且这种滑道是用船台小车兼做下水滑车的,故滑道末端水深较小,滑道建设投资小。
但是,这种下水方式和所有采用纵向下水工艺滑道一样存在船舶尾浮时较大的首端压力。
一般这种方式多用于国内码头岸线紧张而腹地广大的渔船修造厂和中小型船厂,修造船可以在内场水平船台进行,只设一条下水滑道,减少滑道水下部分的养护工作量。
这种下水方式在使用时可以人工控制载有待下水船舶的船台小车的速度,必要时可以停止下水。也可以用于船舶的上排修理。
5、高低轨横向滑道机械化下水
这种滑道由滑道斜坡部分和横移区两部分组成。下水车在滑道斜坡部分移动时,邻水端和靠岸端得走轮各自行走在高低不同得两层轨道上,以保持下水车架面处于水平状态。为此斜坡部分得高轨和横移区得相应轨道应该用相同半径的圆弧平滑连接起来。高轨I和低轨II得高度差应保证邻水端和靠岸端得走轮轴处于同一水平面。过渡曲线上任何两点之间得水平距离应恒等于走轮轴距,才能使下水车在下滑得任何位置都能保证水平。这种方式具有布置简单、架面较低、斜坡部分受力时不致出现深陷得凹槽等优点,同时可以在横移区侧翼布置多船位水平船台,机械化程度较高和操作简单可靠,对水域的宽度和深度得要求都比纵向下水小的多,下水最大重量5000吨。但这种方式水工建筑复杂,铺轨精度高,造价高。
6、梳式滑道机械化下水
由斜坡滑道和水平横移区组成,而且和横移区侧翼的多船位水平船台连接,船台小车和下水车式分别单独使用。
在斜坡滑道部分铺设若干组轨道,每组轨道上有一辆单层楔形下水车,每辆下水车有单独的电动绞车控制。斜坡滑道部分和横移区的轨道交错排列,位于轨道错开地区处于同一水平处的连线称为O轴线,水平轨道和斜坡滑道互相伸过O轴线一定长度,形成高低交错的梳齿,所以称为梳式滑道,其作用是将水平船台上的待下水船舶转载到楔形下水车上。
具体操作时,将船舶置于船台小车上,开动船台小车做纵向运动,待船舶移到横移区的纵向轨道和横向轨道交错处时启动小车下部的液压提升装置提升船台小车的走轮,将车架旋转90度后落下走轮到横移轨道上,开动船台小车将船舶运动到O轴线处,再次启动船台小车上的提升装置将船舶略为升高,此时用电动小车将楔形下水车托住船舶,降下船台小车的提升装置并移开船台小车,船舶即座落在下水车上,最后开动下水车上的电动绞车将船舶送入水中完成下水作业。
船台小车和下水车各自有单独的电动绞车,免去穿换钢丝的麻烦,提高了作业的安全性和作业效率;下水车的轮压较低,对斜坡滑道的施工精度要求较低;各个区域的建设独立性较强,可以分期施工。但由于自备牵引设备,船台小车结构复杂,维修繁琐;船台小车走轮转向和O轴线处换车作业麻烦,使用船厂不多。
7、升船机下水
升船机就是在岸壁处建造的一个承载船舶的大型平台,利用卷扬机做垂直升降的下水设施。根据平台和移船轨道的相对位置分为纵向和横向两种类型。
船舶下水时首先驱动卷扬机将升船机平台与移船轨道对准并用定位设备固定之,船舶在移船小车的承载下移到平台上就位,带好各种缆索,解除定位设备,卷扬机将升船机平台连同下水船舶降入水中,船舶会在自身浮力作用下自行起浮。
升船机结构紧凑,占地面积小,适用于厂区狭小,岸壁陡立。水域受限的船厂,升船机作业平稳,效率高,适用于主导产品定型批量生产。但升船机对船舶尺度限制大,只适用于中小型船厂。上海的4805厂(申佳船厂)有国内第一座3000吨级升船机。
利用浮船坞做下水作业,首先使浮船坞就位,坞底板上的轨道和岸上水平船台的轨道对准,将用船台小车承载的船舶移入浮坞,然后将浮坞脱离与岸壁的连接,如果坞下水深足够的情况下浮坞就地下沉,船舶即可自浮出坞;如果坞下水深不足就要将浮坞拖带到专门建造的沉坞坑处下沉。
根据船舶入坞的方式分为纵移式和横移式。纵移式的浮坞中心线和水平船台移船轨道平行,可以采用双墙式浮坞,船舶入坞按船长方向移动。上海江南和广州黄埔使用此类浮坞。横移式浮坞多使用单墙式浮坞,也可以使用双墙式浮坞,但这种浮坞的一侧坞墙可以拆除,使用时将浮坞横靠在水平船台之岸壁,用行车拆去靠岸一侧坞墙,将船舶拖入浮坞,再将活动坞墙装复做下水作业。
浮坞下水设施具有能与多船位水平船台对接的能力,造价较低,建造周期亦短,下水作业平稳安全,但作业复杂,多数时候要配备深水沉坞坑。 四、气囊式下水 目前,我国中小型船舶生产企业普遍采用气囊下水方式,虽然具有经济便利等优点,但是与传统的滑道式下水、轨道式下水、坞内下水等下水方式相比,气囊下水方式还存在缺乏理论支撑,实际操作中不规范等问题。根据现有船舶建造实践经验,在建造船长小于180 m的钢质普通船舶时,采用气囊式下水方式基本上还是可行的。因此,标准中规定二级Ⅰ类以下的船舶生产企业允许使用气囊式下水方式,同时对采用气囊下水的设施设备以及下水方案也提出了相应的要求。