江南官网app 为船舶与海洋工程行业提供技术支持与动力,是船舶行业最大门户分类网站
全国: | 上海:
水上物流产品分类
主页 > 航运信息 > 造船业形势(造船业的未来)
造船业形势(造船业的未来)
来源:www.ascsdubai.com 时间:2022-11-14 06:00 点击:287 编辑:admin

1. 造船业的未来

没武汉的话你们只能组装民船。。。

2. 造船行业现状

台湾的航空工业曾经能组装F-5E/F战斗机(美式第二代战斗机),甚至在美国帮助下研制IDF战斗机(入门级的第三代战斗机),现在已经退步了。台湾没有航天工业。台湾的军舰制造曾经辉煌过,90年代能在美国的技术支持下仿制改进佩里级导弹护卫舰(美国70年代研制的4000吨级导弹护卫舰,台湾称为成功级导弹巡防舰),后来也退步了,21世纪研制的比较著名的舰艇有磐石号综合补给舰(按民船标准建造的2万吨级综合补给舰)、沱江级“迅海舰”(双体构型的500吨级大型导弹艇,有一定的雷达隐身处理,火力强大,航速较快,电子设备落后,适航性也不太好)。

3. 造船业的未来走势

船舶行业属于装备制造行业。

按国民经济行业分类,船舶行业属于制造业。制造业是指对制造资源(物料、能源、设备、工具、资金、技术、信息和人力等),按照市场要求,通过制造过程,转化为可供人们使用和利用的大型工具、工业品与生活消费产品的行业。制造业包括:产品制造、设计、原料采购、仓储运输、订单处理、批发经营、零售。在主要从事产品制造的企业(单位)中,为产品销售而进行的机械与设备的组装与安装活动。

从近十年中国船舶制造业占世界造船市场份额的变化可以看出,中国船舶制造业在全球市场上所占的比重正在明显上升,中国已经成为全球重要的造船中心之一。而国际制造业的产业转移趋势是中国船舶制造业发展面临的最大机遇,在“十一五”期间中国造船业将对韩、日的领先地位形成有力地挑战。但设计能力落后、配套产业发展滞后将是制约行业发展的主要瓶颈。在短期内,国际及国内水运市场的繁荣为行业增长提供了有力地保障,而油价的持续高位运行以及钢铁等原材料价格的上涨则构成了行业运营的主要压力。

4. 造船行业发展前景

港口与船舶专业就业前景好。

港口与船舶专业这个专业因为开设此专业的院校较少,因此这方面的人才备受欢迎。毕业生到船舶与海洋工程设计研究单位、海事局、国内外船级社、船舶公司、船厂、海洋石油单位、高等院校、船舶运输管理、船舶贸易与经营、海关、海上保险和海事仲裁等部门,从事船舶与海洋结构物设计、研究、制造、检验、使用和管理等工作,也可到相近行业和信息产业有关单位就业。

5. 造船业的未来发展前景

本科毕业去造船厂还是比较不错的选择,尤其是国企造船厂。

先有两三年的工作经验,对行业有了大体的认识之后再考虑以后的发展前途,可以选择海工方向或者以后跳槽去船检,考考公务员等发展方向,不过大部分去船厂的人结婚之后都是留在了船厂,很多人在一个船厂干了一辈子。

6. 造船业的未来发展方向

船舶工程技术专业就业方向

本专业学生毕业后主要面向大中型造船、修船企业和船舶设计、船舶制造、船舶检验等单位,从事船舶电工工艺设计、电气设备安装及调试、船舶电站使用及管理、船舶自动控制系统的管理及操作、工业企业电气设备操作及管理等工作。经过一段时间的锻炼,可以成为生产管理骨干。

从事行业:

毕业后主要在新能源、机械、建筑等行业工作,大致如下:

1 新能源

2 机械/设备/重工

3 建筑/建材/工程

4 交通/运输/物流

5 仪器仪表/工业自动化

7. 未来造船行业的发展趋势

五方面发展趋势

碳排放交易

海洋环境保护委员会(MEPC)上周开会讨论了新的IMO短期修正案草案,该草案将要求船舶调整其操作和设备,在2030年之前将碳排放与2008年相比降低40%。尽管MEPC同意了这些修正案,但最终的通过的决定将在2021年的MEPC第76届会议上做出。

由于这些法规不够严格,不足以实现欧盟的雄心壮志,因此欧盟仍在考虑建立“区域排放交易系统”(ETS),只有所有欧盟成员国都同意的情况下才有可能实现。如果IMO不能就各国政府批准的指导方针达成共识,那么未来几年可能会有多个区域性ETS,从而导致各种贸易航线的成本上升。

低硫燃料

硫排放会导致环境恶化,空气污染会导致经济损失。IMO 2020已于今年生效,要求承运人使用硫氧化物(SOx)含量低于0.5%的燃料,如极低硫燃料油(VLSFO)和船用瓦斯油(MGO)。

今年第一季度,VLSFO价格较高,但COVID-19引发VLSFO价格下跌,而重质燃料油(HFO)价格保持相对稳定。今年,许多船舶运营商改用VLSFO。一些船舶运营商也在寻求使用液化天然气(LNG)作为替代方案。

洗涤塔

如果船舶安装减少硫排放的洗涤塔,则船舶可以继续使用含硫量3.5%的HFO并达到IMO 2020标准。COVID-19拉近了VLSFO和HFO之间的价格差距。因为价格优势很小,所以安装洗涤塔的船只越来越少。尽管今年对洗涤器装置的需求有所下降,但随着新的COVID-19疫苗有望在2021年广泛使用,情况可能会发生变化。

随着经济恢复正常,对燃料的需求将增加。这将导致新燃料价格变动。如果VLSFO和HFO之间的价格差距扩大到使洗涤塔的投资回报率(ROI)对运营商又有意义的水平,则可能会安装更多洗涤塔。为了使其可行,HFO价格必须远低于VLSFO价格。

岸电设施

根据美国环境保护署(EPA)评估,“使用区域电网发电时,总体污染物排放最多可减少98%”。

根据位置的不同,停泊的船舶可以选择使用自己的电力,从而产生排放或使用岸电。将船舶接入岸上的电网可以减少局部和整体的排放量,尤其是在使用风能、潮汐或太阳能等可再生能源为电网供电的情况下。根据EPA的说法,岸对船发电,也被称为替代船用电(AMP),可改善港口周围的空气质量,因为“岸电通常产生零现场排放”。

8月,加利福尼亚空气资源委员会(CARB)批准了一项新法规,以减少远洋船舶的排放和污染。它基于《 2007年停泊条例》,该条例自2014年以来已将超过13,000艘船舶的有害排放量减少了80%。从2023年开始,汽车运输船和油轮将被要求通过接入岸上供电或使用经批准的控制系统来达到排放标准。

数字化转型

COVID-19迫使供应链在安全性和效率方面寻求解决方案。随着新贸易协定的生效,航运业正从海关表格转向订单确认。使文档数字化可以节省时间,降低面对面传播COVID-19的风险,减少对纸张的依赖并节省资金。

为此,业界建立了集装箱数字化航运协会(DCSA),旨在通过使用标准的电子提单(EBL)来消除海运交易中的纸张。DCSA宣称“纸质票据处理成本是EBL处理成本的3倍。” 尽管海事在数字化方面有很大的发展空间,但COVID-19疫情正在加速过渡。

8. 造船业的未来发展趋势

结构工程是人类文明的脊梁。人类最早的结构大概是利用天然条件的巢居和穴居,后来发展为自己凿户建房而住。我国早在三千年之前的《周礼》这部书的《考工记》中就已经记载了各种建筑的形制。到了汉代在王延寿的《鲁灵光殿赋》中说:“于是详察其栋宇,观其结构。”出现了结构的专名词。

随着人类文明的发展,人类所建造的结构种类愈来愈多,愈来愈复杂。继房屋结构之后,又出现了道桥、车船、水利、机器、飞机、火箭、兵器、化工设备、输电等各色各样的结构。

雅典女神庙,坐落于雅典卫城,建于438B.C.是古希腊建筑的典型例子

随着结构种类的多样化和复杂化,结构的概念也在扩展。目前,所谓结构,是指凡是能够承受一定荷载的固体构件及其系统的人造物都统称为结构。从更广义的意义上说,凡是承受一定载荷的固体构件及其系统自然物,如植物的根、茎、叶、动物的骨骼、血管、地壳、岩体等也可以看作结构。

结构的发展紧密地和结构材料与结构力学有关。前者可以看作结构工程的硬件,后者可以看作结构工程发展的软件。

无论是东方还是西方,在使用钢、混凝土为主要建筑材料之前,时间最长的是以石、木、砖为建筑材料。具体来说,西方多以石料作建筑材料,而我国和东方各国多以砖、木为建筑材料。木结构不耐火,也不耐腐蚀,所以我国存世古建筑历史很长的不多。

应县佛宫寺释迦塔(公元1056年)

1774年,英国工程师斯密顿(J.Smeaton)在建造海上灯塔时石灰。粘土、砂混合物砌基础,效果很好。1824年英国石匠营造者亚斯普丁(J. Aspdim,1779-1885)取得了烧制水泥的专利,因其与波特兰地方的石材很相近,所以称为波特兰水泥。法国1840、德国1855设水泥厂。1970年世界每人每年使用水泥156公斤。

19世纪中叶之后,炼钢技术得到普及于是在结构上普遍采用钢铁。1859年英国建成世界上第一艘钢船。1846年英国在北威尔士建成布瑞塔尼亚铁路大桥(1846,铁管)1873年英国伦敦建成跨泰晤士河的阿尔伯特吊桥,最大跨度384英尺。

布瑞塔尼亚大桥(1846,铁管)

在人类有了水泥、钢铁等现代材料之后,结构的形式速度复杂化。

结构力学,一直是结构设计的理论基础。它的基础是经典力学、弹性力学、塑性力学、弹性体的振动与波的理论、以及弹性体平衡的稳定性理论。

19世纪和以前的结构力学研究

在结构力学研究的历史上,最早是静力学的研究,因为在以砖石木为主要结构材料的时代主要遇到的问题是结构的平衡问题。后来才发展到有关强度的研究。

人类研究得最早的结构元件是梁。达·芬奇在他的手稿中研究和讨论了柱所能承受的载荷。伽利略在他《关于两种新学科的对话》(1638年)提到、考查了固定端悬臂梁的承载能力的问题。马略特作了伽利略所作的实验,由于他们的截面上平衡条件都不对,所以结果的系数都不正确。雅科比·伯努利(Jacob Bernoulli,1654-1705)关于梁的研究,这就是现今人们所称的伯努利梁理论。

结构力学的其次一种重要元件。基尔霍夫(Gustav Robert Kirchhoff 1824-1887)在1850年发表了平板问题的重要论文,文章纠正了以往关于平板问题边界条件的错误。基尔霍夫采用虚位移原理推导板的边界条件,指出对于求解平板问题只要两个边界条件便够了。他正确地求解了圆板的振动问题。在建立平板问题的方程时,他假定:

变形时垂直于中面的直线仍保持为直线,变形后还垂直于中面;

中面的元素在变形时不伸长。

这个简化平板问题的假设现今仍在使用,被称为直法线假设也称为基尔霍夫假设。1888年,英国人乐甫(Augustus Edward Hough Love1863-1940)利用基尔霍夫对平板问题的假设导出了弹性薄壳的平衡方程,至今这个假设被人称为基尔霍夫――乐甫假设。

实际的工程结构往往不是单一的构件,而是构件的复杂系统。早期精确的固体力学是在单个构件上进行研究,如梁的弯曲、柱的扭转等。后来随着近代工业的发展,越来越多地要求对复杂的结构系统进行研究。早期在静力学发展成熟时,就有处理多个构件的静力平衡问题的研究,现在,在有了变形体力学之后,有关变形固体的多个构件的内力与变形分析问题也便很自然地提到日程上来了。

结构力学的内容十分广泛,吊桥、拱、桁架、梁、弹性地基、挡土墙等等。他的应用又涉及铁路、公路、造船、机械、水利、等众多的工程部门。所以随着现代工业的发展它的内容也逐渐丰富了起来。

1. 连续梁的理论

纳维是实际上处理连续梁的最早学者。他在1825年的论文中最早给出了处理这一问题的三弯矩方程。但还不是现在的形式。真正现在形式的三弯矩方程是克拉珀龙(B.P.E.Clapeyron,1799-1864)于1849年在重建巴黎附近的一座桥梁时发展出来的,到1857年才以论文的形式发表。1855贝尔托(H.Bertot)的论文最早提到了三弯矩方程。

2. 麦克斯韦耳及其对桁架的研究

1864年麦克斯韦耳总结他关于桁架研究的一般结论。他已经可以区分静定与超静定桁架。对于静定桁架,麦克斯韦耳在前人的基础上简化了用作图的方式去求桁架的内力。对于超静定桁架,麦克斯韦耳从能量法导出了解超静定结构的一般方法。大约在10年之后,他的这个方法为莫尔(O. Mohr,1835-1918)加以整理,给出规范的形式,这就是目前通用的力法,又称为麦克斯韦耳――莫尔方法。

3. 卡斯蒂利亚诺定理

卡斯蒂利亚诺(A.Kastiliano,1847-1884)是意大利工程师。1873年他的工程师学位论文在1875年正式出版。论文中包含了现今称为的卡斯蒂利亚诺定理与单位荷载法等结构力学的经典内容。

他的定理是,若将变形能写为广义力的函数

Pi(i=1,2,...,n)为广义外力,则有

20世纪结构力学的进展

求解超静定结构的力法是19世纪末就建立了。用形变法求解超静定刚架结构是20世纪初最早由本笛克森(Axel Bendixen)在1914年给出的。这种方法求解较多未知量问题时,在30年代由克罗斯(Hardy Cross)提出了一种逐次近似的方法,称为松弛法。这个方法在美国很快得到了推广。

随着人类文明的发展,结构变得越来越复杂。从本世纪开始,从建筑、造船、航空、桥梁、车辆、起重机械、大型水坝、隧道与地下结构等等方面不断提出越来越复杂的结构课题,需要对它们的强度进行分析。

为了对这些复杂结构进行分析,人们不得不引进一系列假设对结构进行简化。这种简化在现在看来未免过于粗略,但是它是人类在处理简单结构到迎来计算机时代之间的一种过渡手段。

例如,拱坝是一种比较复杂的结构,要想准确分析它,需要求解变厚度壳的方程,那是十分复杂的计算工作。美国在1929年采用了一种称为“拱贯梁”的近似方法,这种方法是把坝在水平方向分为若干条拱,在铅直方向分为若干条梁,然后利用载荷分配的方法逐步近似求解。在电子计算机出现后,拱贯梁法已经被淘汰,但它的确在历史上起过重要作用。

结构的复杂化是沿着两个方向发展的,一个方面是构件简单,例如梁与杆,但是用它组成越来越复杂的系统,未知量成百上千,另一方面是发展复杂的构件,板、壳及其组合系统。板壳理论到乐甫时代,就已经建立了,到20纪30-40年代又有一个大发展的阶段。这时提出与解决了一批新的问题,如稳定性问题、非线性板壳问题、板壳的一般理论问题等。

俄国杰出的工程师帕颇考维奇(П.Ф.Папкович,1887-1946)于1947年出版的《船 舶结构力学》两大卷,是20世纪早期研究复杂结构成果的总结。

计算结构力学的发展

人类研究计算工具有很久的历史,从算筹、算盘、手摇计算机、电动计算机,已经有几千年了。1945年在美国诞生的电子计算机既是计算工具的革命,又是牵动整个科学技术的大革命。

最早的电子计算机ENIAC的设计方案是莫希利(J.W.Mauchly,1907-1980)提出的。研究小组的总工程师是埃克特(J.P.Eckert,1919-)。1945年底,ENIAC宣告竣工。

计算机一旦来到世界上,便受到人们的热情关注与不断改进。先后经过了四次换代:从1945年到1958年以电子管来制造计算机为第一代,从1959年到1963年以晶体管来制造计算机为第二代,从1964年到70年代初以集成电路来制造计算机为第三代,从70年代以后用大规模集成电路制造巨型计算机为第四代。特别是,从70年代中开始的微处理机,使计算机的性能大大提高,并且由于价格便宜使计算机大为普及。据有人统计,从1945年第一台计算机诞生起,计算机的性能每18个月提高一倍,计算机的价格每18个月降低一半。

自有史以来人类发明的各种工具,都是延长人的器官,如望远镜、显微镜是延长人的眼。而计算机则是延长人的脑。所以人们又把计算机称为“电脑”。计算机从它的原理、设计、制造与应用已经形成了一个新的庞大的学科群,这就是计算机科学。

在20纪初,英国著名的力学家乐甫在他的名著《数学弹性理论》一开头,总结力学发展的规律时说:定理越来越少,计算越来越繁。意思是说一些有比较狭义意义的定理被一些更广泛意义的定理所包含,而计算公式越来越复杂。因而力学研究极大的困难在于计算太慢。计算工具太慢就成为力学研究与发展的瓶颈。

美国人发明电子计算机的初衷也正是为了解决计算弹道这个典型复杂的力学问题开始的。计算机的产生使力学学科发生了巨大变化。结构分析、弹道计算、空气动力计算、数值天气预报、渗流与地下水的运动规律、天体力学中的轨道计算等等越来越多、越复杂的问题都可以交给计算机计算了。

计算机产生后,力学学科的研究手段,从只有理论、实验,增加为理论、实验与计算三种手段。计算机的强大威力淘汰了一些不适应计算机的过时方法,适应计算机的特点发展了新的计算方法,在计算机的帮助下发现了许多新现象,如奇怪吸引子与混沌就是在计算机的帮助下发现的。

计算力学这一名词的出现大约是50年代末的事情。它是研究借助计算机求解力学问题、探索力学规律、处理力学数据的新学科。计算力学又是力学、数学、计算机科学的交叉学科。

在计算机发明后的早期,用计算机求解力学问题或别的问题仅仅利用了计算机快这一优点。紧接着而来的问题是程序工作量不能适应计算机的高速度。一台计算机需要数以百计的工作人员编程序才能喂饱。于是编写程序又成了合理使用计算机的瓶颈。人们想出了许多方法去解决这一困难。从50年代先后出现的符号汇编语言、FORTRAN语言、ALGOL语言等以及随之而迅速发展起来的软件产业,就是为解决这一问题应运而生的。

在适应于计算机求解力学问题节约程序人力方面,最成功的就是有限元方法的产生与发展。它的产生也是计算力学作为力学一个独立的分支学科形成的标志。

有限元法的思想尽管可以追溯得更早,如有人说有限元的思想是40年代美国人库朗(R.Courant)在1943年提出来的,有人说有限元是加拿大人辛格(J.L. Synge)在40年代提出来的,更有人说有限元是欧拉的折线法就包含的,还有人说在东汉刘徽的割圆术就是有限元法,不一而足。当然这些说法也不是完全没有道理。因为有限元法的思想的确是有一部分同上述人的工作有点联系。但是要知道,有限元法是同计算机紧紧相联系的。

事实是,在50年代中期世界各国都有一批人在思考用计算机求解结构力学与连续介质问题。如曾经在英、德工作过的希腊人阿吉里斯(J.H. Argyris)1956年、美国的特纳(M.J. Turner)、克拉夫(R.W. Clough)与马丁(H.C. Mardin)在1956年、苏联的符拉索夫(В.З.Власов)在50年代、中国的冯康在60年代初都提出了帽子函数插值或单元刚度的矩阵表示。所以很难说有限元的思想是那一个人的发明,它是一种世界性思潮的产物。

不过在有限元法的发展历史上的重要事件是,50年代末加利福尼亚大学伯克利分校的威耳孙(E.L. Wilson,1930-)在克劳夫指导下的博士论文《二维结构的有限元分析》,该论文于1963年完成了世界上第一个解决平面弹性力学问题的通用程序。这个程序的主旨是借助于它解算任何平面弹性力学问题不需再编程序了,只要按说明输入必要的描述问题的几何、材料、荷载数据,机器就可以进行计算,并且按照要求输出计算结果。

有限元法的程序一经投产,立刻显出它的无比优越性,原来在弹性力学领域内对付平面问题,只有复变函数方法与平面光弹性方法两手,这两种方法在有限元法的对比下便渐渐退出了历史舞台。

威耳孙在有限元程序系统方面后来还进行过许多有意义的研究,他编写了有限元的多种单元的程序SAP (Structural Analysis Program),在他的指导下,他的研究生编写了非线性结构分析程序NONSAP,1981年他还最早编写了适应微处理机的程序SAP81。

SAP程序经曲圣年、邓成光、吴良芝等移植与修正、SAP81程序经袁明武扩充改造形成独立的版本SAP84,这两个程序在我国工程建设中发挥了重大作用。NONSAP经过美国巴特(Bathe)的改进形成有世界影响的非线性分析程序ADINA。

随后,结构分析的有限元软件迅速发展。包含二维元、三维元、梁单元、杆单元、板单元、壳单元、流体单元等多种单元、能解决弹性、塑性、流变、流体以及温度场、电磁场各种复杂耦合问题的软件以及软件系统不断出现。在10多年内生产与销售有限元软件形成了有相当规模的社会新产业,而且使用有限元法解决实际问题迅速在工程技术部门普及。

1960年克劳夫在匹兹堡举行的美国土木学会电子计算会议上的《平面应力分析中的有限元法》是最早提到有限元的论文。之后有限元的论文、文集、专著大量涌现,专题学术会议不断召开。新的单元、新的求解器不断提出,先后有等参元、高次元、不协调元、拟协调元、杂交元、样条元、边界元、罚单元等不同的单元,有带宽与变带宽消去法、超矩阵法、波前法、子结构法、子空间迭代法等求解方法,还有网格自动剖分等前后处理的研究,这些工作大大加强了有限元法的解题能力,使有限元方法逐渐趋于成熟。1988年出版的《有限元法手册》是有限元法发展的一个阶段总结。

应当注意的一些研究方向

计算力学的迅速发展,以及为他所取得的成功所鼓舞,使得一些学者对于计算力学的成就产生了过分乐观的估计。例如在20年前美国就有人说,再过10年风洞就要被计算机代替,20年过去了,计算机还不能取代任何风洞。计算力学所取得的成就,大体上说,对于可以用线性理论来近似的那些问题,靠计算机大部可以较好地解决了,可是对于实质上是非线性的那种力学问题,目前计算机几乎还是无能为力的。

钱学森先生说,力学“是一门用计算机计算去回答一切宏观的世纪科学技术问题,计算方法非常重要;另一个辅助手段是巧妙的实验。”如果说,目前在宏观力学问题中线性问题有百分之九十的可以依靠计算机来求解,百分之十靠实验求解,那么在非线性领域内,情形正好反过来。所以自从计算力学这个学科产生以来,它努力的方向就有两个方面。一方面对于线性问题,主要是扩大它求解问题的规模;另一方面,对于非线性问题来说,在努力寻求计算方法。

近年来非线性问题的求解已经成为计算力学学科发展的主攻方向了。现在看来钱学森先生的看法对于宏观问题中的线性问题,已经是一种现实,而对于宏观问题中的非线性问题,这只能当作计算力学这一学科的努力方向,我们还必须准备走很长的路。

从60年代开始,在结构分析的有限元程序中,逐渐计入非线性项。例如讨论结构材料的塑性性质的,称为物理非线性问题,讨论结构的大变形引起的修正,称为几何非线性问题。最初的计算方案都是采用荷载增量法,即逐步给荷载一个小的增量,求相应的变形增量。

大约从60年代末,人们在实际解题中发现有的问题在荷载达到极大值时计算机总是溢出而停机。这个问题困惑了人们许多年,直到70年代末80年代初才解决。1971年美国学者温泊纳(G.A.Wempner)、1978年荷兰学者瑞克斯(E.Riks)分别从理论上提出解决这个问题的方法,80年代初人们在程序上实现了这个方法。这个方法后来被称为弧长法。

计算机登上历史舞台后,首先在力学中与结构分析结合形成计算力学。这时又提出结构优化问题与结构控制问题。即在给定的荷载与功能要求的条件下借助于计算机寻求最优的结构形式与结构参数,或在一定的外力条件下寻求最优的控制力使结构的内力或位移符合要求。近年来,一种能在电信号刺激下可以很快产生应变反应的材料出现了,人们称之为电流变材料或智能材料,将这种材料用于结构上,给它一定的电信号,结构就可以迅速作出所需要的反应,这种结构也被称为智能结构。对于智能结构的研究是近年来兴起的一个重要研究方向。

结构的优化设计是计算力学中一个重要的非线性研究领域,它的主要目的是在满足一系列条件下(这些条件也被称为约束)寻求结构最优参数。通常这类问题是非线性的,而且计算量非常大,只有靠计算机的帮助才能解决。在钱令希(1916-)教授的大力提倡、组织与推动下,大连理工大学的程耿东、钟万勰得到了一些重要结果,结构优化的研究在我国有很好的发展。

求解非线性问题紧接着而来的是遇到分叉的问题。在有限元的通用程序中,对于结构稳定性的问题,通常是将问题化归于一个特征值问题,它的基础还是线性理论。在用非线性程序来求解时,往往由于遇到分叉而不能前进。这是因为在分叉点结构的总体刚度矩阵退化问题无法继续求解。

为了克服这一困难,对于高维系统中的平衡解的静分叉以及霍普夫分叉,人们又发展了一系列的方法,但是在实践上还不能说已经彻底解决了。这方面的总结可参阅武际可与苏先樾著的《弹性系统的稳定性》一书(科学出版社,1994年)。关于高维系统的同宿轨道与异宿轨道的计算,以及高维系统向混沌转化的计算,迄今仍是难题。

9. 造船厂未来前景

船电专业,就是在船上做电机员,主要负责船上电器设备的维护保养,但是这些电器设备不是那么容易出现故障的,所以很多时候电机员在船上只负责换个灯泡啥的,很闲。

大约十年前,国际上要求轮机员都要掌握电器知识,航海院校也不再招收船电专业。

但实践证明,电器不是那么好学的,而轮机员在真正应对电器问题时又显得力不从心,所以一时船上还少不了电机员。

于是就出现船上需求电机员,而航海院校又不再培养电机员,公司到哪都招不到人,所以那几年电机员非常少,没办法只好找些老电工上船做电机员。

现在似乎一些院校又培训船电专业了。

电机员在船上的级别相当于二副二管轮,工作却远比二副二管轮轻松,而且不需要从三副三管干起,但是也没有更大的晋升空间。

而现在的电机员市场比较乱,人很多,大多都不是院校毕业的,都是些电工出身,看到船上电机员门槛低工作轻松收入又高,就纷纷挤入这个行业。

该介绍的情况我都讲了,前景你自己判断吧。

10. 造船业现在如何

一般说现在全球造船业三强,是指中日韩,造船业的全球份额目前中国第一,韩国第二,日本第三,2022年1-6月,我国造船完工量、新接订单量和手持订单量以载重吨计分别占世界总量的45.2%、50.8%和47.8%,按修正总吨计分别占42.0%、47.7%和41.5%,国际市场份额均位居世界第一。

11. 造船业的未来前景

就业前景不错。

航海专业就业方向:航海技术专业毕业生经国家海事局考试合格后取得无限航区3000总吨及以上、主机动力3000KW及以上三副、三管轮见习证书、GMDSS普通操作员适任证书、无限航区船舶值班水手、值班机工适任证书和专业培训证书等。可从事与航海相关的技术研发或具体操作的专业人员.造船厂、船舶主机厂及其他与轮机工程有关的企事业单位和海军有关部门的工程技术人员.在海洋运输各企事业单位从事海洋船舶驾驶和营运管理工作。

Baidu
map