返回首页

壮大海洋能源(形成海洋能源)

来源:www.ascsdubai.com   时间:2023-07-13 14:41   点击:129  编辑:jing 手机版

1. 形成海洋能源

形成海洋温差能的源头是太阳能,在各种海洋能之中,海洋温差能属于海洋热能,其能量的主要来源是蕴藏在海洋中的太阳辐射能。海洋温差能具有储量巨大以及随时间变化相对稳定的特点,因此,利用海洋温差能发电有望为一些地区提供大规模的、稳定的电力。

世界大洋的面积浩瀚无边,热带洋面也相当宽mini—OTEC广。海洋热能用过后即可得到补充,很值得开发利用。据计算,从南纬20度到北纬20度的区间海洋洋面,只要把其中一半用来发电,海水水温仅平均下降l℃,就能获得600亿千瓦的电能,相当于目前全世界所产生的全部电能。

扩展资料:

海水温差发电技术,是以海洋受太阳能加热的表层海水(25℃~28℃)作高温热源,而以500米~l000米深处的海水(4℃~7℃)作低温热源,用热机组成的热力循环系统进行发电的技术。从高温热源到低温热源,可能获得总温差15℃~20℃左右的有效能量。

最终可能获得具有工程意义的11℃温差的能量。早在1881年9月,巴黎生物物理学家德·阿松瓦尔就提出利用海洋温差发电的设想。1926年11月,法国科学院建立了一个实验温差发电站,证实了阿松瓦尔的设想。

2. 形成海洋能源差的源头是

海洋温差能形成原因是太阳能。海洋温差能也叫海洋热能,海洋中上层水温的差异蕴藏着一定的能量,被称为海水温差能。到达水面的太阳辐射能大约有60%透射到1米的水深处。有18%能够到达海面以下10米深度,少量的太阳辐射能甚至透射到水下100米以下的深度。海水温度随水深而变化,一般深海区大约可以分为三层,第一层是海面到深度约60米左右的地方,称作表层,该层海水一方面吸收着太阳的辐射能,一方面受到风浪的影响,使海水互相混合,这一层海水温度变化比较小。水温大约在26到27摄氏度,第二层从水深60米至130米,海水温度随着深度加深急剧递减,温度变化比较大成为变温层。第三层深度在300米以上,这层海水由于受到从极地流来的冷水的影响,温度降低到4摄氏度左右。表层海水和深层海水之间存在着20摄氏度以上的温差,是巨大的能量来源。

3. 形成海洋能源的源头

形成海洋温差的温差能的源头是太阳能,即蕴藏在海洋中的太阳辐射能,在各种海洋能之中,海洋温差能属于海洋热能,具有储量巨大以及随时间变化相对稳定的特点。

且能利用海洋温差能发电有望为一些地区提供大规模的、稳定的电力,而根据所用工质及流程的不同。

4. 形成海洋能源的源头是什么

《奥德赛》作为史诗值得探讨的地方还很多。它其中也还有很多没完全解决的谜团。就单对古希腊人文化和历史的贡献也是巨大的。作为史诗巨著它与《伊利亚特》对西方乃至整个人类文化都有较深远的影响。我个人认为,在探究东西方人文化品格的形成的层面,它对于西方社会﹑西方文学﹑西方人的的影响就好比《诗经》对中国人审美意识有深远的影响。

《奥德赛》被看成西方海洋文学的源头之作,在学界不存在什么疑问。例如,江苏少年儿童出版社主办的《少年文艺》月刊杂志,在2002年第4期上刊载过《十部经典海洋文学推荐榜》的文章,该文指出:“古希腊两部最伟大的史诗《伊利亚特》、《奥德赛》,后者即是人类第一部海洋文学”。

又比如,海洋出版社于2009年出版的《海洋文学研究文集》中的“序言”强调指出:“《荷马史诗》就是西方海洋文学的源头”《荷马史诗》作为西方文学之源头,譬如,可以从所谓军事文学的视角看,其中的《伊利亚特》又往往被视为欧洲文学史上第一部战争题材的巨著;也可以从所谓流浪汉小说源流看,其中的《奥德赛》又被看作是西方文学中第一部以个人遭遇为主要内容的杰作,成为由中世纪传奇逐渐演化为近代流浪汉小说的先驱,权作旅程文学的原型。所以,《奥德赛》既然被认定为西方海洋文学的开山之作。

5. 形成海洋能源头的是

不是

风能不是海洋提供的资源。风能是空气均匀水平运动产生的动能,是地球上的一种需求量较大的自然资源。风能的本质是来源于太阳辐射而造成地球大气的运动。因此它属太阳能的一种,又由于它有可循环使用的特点,所以就属于可再生资源。

6. 形成海洋能源差

形成海洋温差能的源头是太阳能。

形成海洋温差能的源头是什么

海洋温差能:

在各类海洋能之中,海洋温差能属于海洋热能,其能量的主要来历是储藏在海洋中的太阳辐射能。海洋温差能具有储量庞大以及随时间变革相对不变的特点,因此,操作海洋温差能发电有望为一些地域提供大局限的、不变的电力。

海洋热能主要来自于太阳能。世界大洋的面积众多无边,热带洋面也相当宽阔。海洋热能用事后即可获得增补,很值得开拓操作。

据计较,从南纬20度到北纬20度的区间海洋洋面,只要把个中一半用来发电,海水水温仅平均下降l℃,就能得到600亿千瓦的电能,相当于今朝全世界所发生的全部电能。专家们预计,单在美国的东部海岸由墨西哥湾流出的暖流中,就可得到美国在1980年需用电量的75倍。

7. 形成海洋能源温差的是

海洋能源有哪些种类?

1.潮汐能

所谓潮汐能,就是因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量。

潮汐能可以像水能和风能一样用来推动水磨、水车等,也可以用来发电。当前,潮汐能的主要功能就是发电。

世界最大的潮汐能源系统

利用潮汐能发电,首先要做的就是在海湾或河口建筑拦潮大坝。形成水库,在坝中修建机房,安装水轮发电机,利用水位差使海水带动水轮机发电。建成潮汐发电站后还有利于海产养殖业的发展。

世界上,潮汐能主要多分布在潮差较大的喇叭形海湾和河口地区,如加拿大的芬迪湾、巴西的亚马逊河口、南亚的恒河口和中国的钱塘江口等都蕴藏着大量的潮汐能。

我国海岸线的长度为1.8万公里,潮汐能资源十分丰富。在潮汐能资源的开发利用上,目前我国沿海地区已经修建了一些中小型潮汐发电站。在温岭江厦港,就有一座我国规模最大的潮汐发电站——江厦潮汐发电站,它还是世界第三、亚洲第一大潮汐发电站。潮汐发电站受潮水涨落的影响,具有很大的不稳定性,海水对水轮机及其金属构件的腐蚀及水库泥沙淤积问题都较严重。这些问题都是急需解决的,只有将这些做好,就能更好地利用潮汐能来发电。

2.波浪能

波浪能集有许多优点,比如能量密度高、分布面广泛。特别是在能源消耗多的冬季,可以利用的波浪能能量也最大。它的能量如此巨大,一直都吸引着沿海的能工巧匠们。他们想尽各种办法,期望能够驾驭海浪开辟新天地。

波浪能发电

波浪能电站

具体而言,波浪能就是指海洋表面波浪所具有的动能和势能。海洋表面的海水受太阳辐射给予的热量,可以说它是世界最大的太阳能收集器。温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在辽阔的海洋表面上,风能以自然储存于水中的方式进行能量转移,因此,说波浪能是太阳能的另一种浓缩形态,并不是没有道理的。

在所有海洋能源中,波浪能是最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它事实上是吸收了风能而形成的,它的能量传递速率与风速有一定关系,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能,从而使波浪能发挥出作用。

在风较多的沿海地带,波浪能的密度通常都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着十分有利的波候。而我国的浙江、福建、广东和台湾沿海的波能也较为丰富,在工业经济发展上功不可没。

波浪能之所以能够发电是通过波浪能装置,将波浪能首先转换为机械能,再最终转换成电能。这一技术源自于20世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验,但受客观条件和技术影响,所取得的效果效益有好有差。

3.海流能

简而言之,海流所存储的动能就是海流能。海流能的能量与流速的平方和流量成正比。与波浪能相比,海流能的变化要平稳且有规律得多。海流能有着很大的开发价值。

海流能的利用方式主要是发电。1973年,美国研制出一种名为“科里奥利斯”的巨型海流发电装置。该装置为管道式水轮发电机。机组长l10米,管道口直径170米,安装在海面下30米处。在海流流速为2.3米/秒条件下,该装置获得8.3万千瓦的功率。此外,日本、加拿大也在大力研究试验海流发电技术。到目前为止,我国的海流发电研究也已经有样机进入中间试验阶段,发展前景不可限量。

相比陆地上的江河,利用海流发电要方便得多,它既不受洪水的威胁,又不受干旱的影响,几乎以常年不变的水量和一定的流速流动,为人类提供了可靠的能源。

利用海流发电,除了上面所说的类似江河电站管道导流的水轮机外,还有类似风车桨叶或风速计那样机械原理的装置。一种海流发电站,有许多转轮成串地安装在两个固定的浮体之间,在海流冲击下呈半环状张开,看上去很像花环,因此被称为花环式海流发电站,它是目前海流发电站的主要形式。

4.海洋温差能

海洋是一个巨大的吸热体,仔细观察不难发现,地球上的海洋除了南北的极地和部分浅海外,通常不会结冰,尤其是赤道附近的海域,海水表面温度几乎是恒温的,因此在描述海洋时人们都说它是温暖的。海洋深处的海水温度却很低,它一年四季温度只有摄氏几度,无论如何,太阳也没有办法把它晒热,这与海洋上层的温水比较,大约有20℃的温差。在热力学上,凡有温度差异都可用来作功,这就是我们所要讲的海洋温差能。

大多数情况下,海洋温差是指南纬25°至北纬32°之间海域中海水深层与表层的温度差。我国位于东半球,拥有较好的海洋温差条件,尤其是台湾附近海水温差更大,能够使人们得以很好地利用。

海洋温差能的主要功能就是利用温差发电。海洋温差发电主要采用两种循环系统,一种是开式,一种是闭式。在开式循环中,表层温海水在闪蒸蒸发器中,由于闪蒸而产生蒸汽,蒸汽进入汽轮机做功后流入凝汽器,由来自海洋深层的冷海水将其冷却。在闭式循环中,来自海洋表层的温海水先在热交换器内将热量传给丙烷、氨等低沸点工质,使之蒸发,产生的蒸汽推动汽轮机做功后再由冷海水冷却。在这个循环的过程中,可以不断地将海水的温差变成电力,由此使发电成为实现。

4.海洋盐差能

所谓盐差能,就是指海水与淡水之间或两种含盐浓度不同的海水之间的化学电位差能。这种能量主要存在于河流与海洋的交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能源中密度最大的一种可再生能源。海洋盐差能可以用来发电在很久以前已被人们认识到。

其发电原理主要是:当把两种浓度不同的盐溶液盛在一个容器中时,浓溶液中的盐类离子就会自发地向稀溶中扩散,一直到两者浓度达到一致。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。有学者在经过详细的计算后发现在17℃时,如果有1摩尔盐类从浓溶液中扩散到稀溶液中去,就会释放出5500焦的能量来。由此专家设想到:只要有大量浓度不同的溶液可供混合,就一定会有巨大的能量释放出来。经过进一步计算还发现,如果利用海洋盐分的浓度差来发电,它的能量可排在海洋波浪发电能量之后,但又要大于海洋中的潮汐能和海流能。

利用盐差能发电有多种方式,比如有渗透压式、蒸汽压式和机械一化学式等,其中渗透压式方案获得了人们最大的重视。将一层半渗透膜放在不同盐度的两种海水之间,通过这个膜会产生一个压力梯度,迫使水从盐度低的一侧渗透到盐度高的一侧,从而稀释高盐度的水,直到膜两侧水的盐度变成一致。此压力称为渗透压,它与海水的盐浓度及温度有着很大的关联。

据估算,地球上存在的可利用的盐差能达26亿千瓦,其能量甚至比温差能还要大。由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新型的能源,海洋能源已吸引了全世界越来越多人的兴趣。

8. 形成海洋能源的过程

海洋资源类型 海洋中有丰富的资源。在当今全球粮食、资源、能源供应紧张与人口迅速增长的矛盾日益突出的情况下,开发利用海洋中丰富的资源,已是历史发展的必然趋势。目前,人类开发利用的海洋资源,主要有海洋化学资源、海洋生物资源、海底矿产资源和海洋能源四类。 海水可以直接作为工业冷却水源,也是取之不尽的淡化水源。发展海水淡化技术,向海洋要淡水,是解决世界淡水不足问题的重要途径之一。 海水中已发现的化学元素有80多种。目前,海洋化学资源开发达到工业规模的有食盐、镁、溴、淡水等。随着科学技术的发展,丰富的海洋化学资源,将广泛地造福于人类。 海洋中有20多万种生物,其中动物18万种,包括16000多种鱼类。在远古时代,人类就已开始捕捞和采集海产品。现在,人类的海洋捕捞活动已从近海扩展到世界各个海域。渔具、渔船、探鱼技术的改进,大大提高了人类的海洋捕捞能力。海洋中由鱼、虾、贝、藻等组成的海洋生物资源,除了直接捕捞供食用和药用外,通过养殖、增殖等途径还可实现可持续利用。 在大陆架浅海海底,埋藏着丰富的石油、天然气以及煤、硫、磷等矿产资源。在近岸带的滨海砂矿中,富集着砂、贝壳等建筑材料和金属矿产。在多数海盆中,广泛分布着深海锰结核,它们是未来可利用的潜力最大的金属矿产资源(图3.14《深海锰结核》)。 海水运动中蕴藏着巨大的能量,它们属于可再生能源,而且没有污染。但是,这些能量密度很小,要开发利用它们,必须采用特殊的能量转换装置。现在,具有商业开发价值的是潮汐发电和波浪发电,但是工程投资较大,效益也不高。 海洋渔业生产 海洋渔业资源主要集中在沿海大陆架海域,也就是从海岸延伸到水下大约200米深的大陆海底部分。这里阳光集中,生物光合作用强,入海河流带来丰富的营养盐类,因而浮游生物繁盛(图3.15《大陆架剖面示意》)。这些浮游生物是鱼类的饵料,它们在海洋中分布很不均匀,一般在温带海区比较多。 温带地区季节变化显著,冬季表层海水和底部海水发生交换时,上泛的底部海水含有丰富的营养盐类,这些营养盐类来自海洋中腐烂的生物遗体。暖流和寒流交汇处或有冷海水上泛的地方,饵料比较丰富。这些地方通常是渔场所在地(图3.16《世界主要渔业地区的分布》)。因此,尽管大陆架水域只占海洋总面积的7.5%,渔获量却占世界海洋总渔获量的90%以上。 世界主要渔业国都分布在温带地区,这些温带国家鱼产品消费量高,市场需求大。中国和日本是世界海洋渔获量较多的国家。中国在充分利用近海渔场(图3.17《舟山渔场的沈家门渔港》)和浅海滩涂大力发展海洋捕捞和海水增养殖业的同时,远洋捕捞也获得了较大的发展。日本可耕地有限,人口密度高,因此海洋水产品在食品结构中比重较大。 海洋油、气开发 海底油气的开发,开始于20世纪初。它的发展经历了从近海到远海、从浅海到深海的过程。受技术条件的限制,最初只能开采从海岸直接向浅海延伸的油气矿藏。80年代以来,在能源危机和技术进步的刺激下,近海石油勘探与开发飞速发展,海洋石油开发迅速向大陆架挺进,逐渐形成了崭新的近海石油工业部门。 地质学家和地球物理学家通常利用地震波方法来寻找海底油气矿藏,然后通过海上钻井来估计矿藏类型与分布,分析是否具有商业开发价值。 海上钻井平台(图3.18《海上钻井平台》)是实施海底油气勘探和开采的工作基地,它标志着海底油气开发技术的水平。工作人员和物资在平台和陆地间的运输一般通过直升机完成。油气田离炼油厂一般都较远,油气要经过装油站通过船舶运到目的地,或直接由海底管道输送至海岸。 海底石油和天然气的勘探、开采是一项高投资、高技术难度、高风险的工程,国际合作和工程招标是可行方式之一。 海洋空间利用 世界人口迅速增长,使陆地空间显得越来越拥挤,海洋空间的开发利用问题越来越令人关注。海洋可利用空间包括海上、海中、海底三个部分,随着人类逐步向海洋挺进,海洋将成为人类活动的广阔空间(图3.19未来海洋空间利用示意)。 海洋环境不同于陆地,它的环境和生态条件有其复杂性和特殊性。人类活动在近海和海洋表面,要抗御多变的海洋气象状况和海水的运动;深海活动要能适应黑暗、高压、低温、缺氧的环境;海水的腐蚀性强,海冰的破坏性大,对工程设备材料和结构有严格的要求。因此,海洋空间资源开发对科学技术和资金投入的依赖性大、技术难度高、风险大。 海洋空间利用已从传统的交通运输,扩大到生产、通信、电力输送、储藏、文化娱乐等诸多领域。交通运输方面包括海港码头、海上船舶、航海运河、海底隧道、海上桥梁、海上机场、海底管道等。生产空间有海上电站、工业人工岛、海上石油城、围海造地、海洋牧场等。通信和电力输送空间主要是海底电缆。储藏空间方面,有海底货场、海底仓库、海上油库、海洋废物处理场等。文化娱乐设施空间包括海洋公园、海滨浴场和海上运动区等。 海洋运输和港口建设 海洋曾经是人类从事交通运输的天然屏障。长期以来,人类一直在努力将海洋屏障变为海上坦途。最初,人们利用人力、风力或洋流作为动力,驾驶木船在近海活动。随着欧洲人到达美洲大陆,世界海洋航运由近海转向远洋。之后,世界大洋重要的航道陆续开辟。20世纪初,开辟了通往南极和北极的航道,巴拿马运河和苏伊士运河相继开通。现在,人类已经能够将船舶驶人世界任何海域(图3.20世界主要海运路线)。 20世纪60年代,世界石油生产和运输增长,大型油轮得到发展。集装箱船的兴起,带来了海洋货物运输的革命。今天,穿梭在辽阔海洋上的是百万吨级的大型集装箱货轮和巨型油轮。这些船舶不仅拥有无线电导航和全球定位技术等现代化仪器设备,还可以选择最佳航线服务,以节省能源和航时,减少危险。 沿海港口是海洋运输船舶停泊、中转和装卸货物的场所,也是人们开发利用海洋空间的主要场所。港口一般有一个服务区域,即腹地,该区域的商品和货物通过这个港口向外扩散。为了完成运输任务,港口要有配套的设施,如码头、装卸设备等,还要有高效率的运作服务。在港口发展过程中,受内外因素的影响,港口的规模、服务功能和范围可能有所变化。例如,某些国家的政府为吸引船舶来本国港口中转,对港口实行特殊政策,将港口辟为自由贸易区、自由港等,不需或很少缴纳费用。 荷兰的鹿特丹很早就是世界贸易的中心。之后,鹿特丹港又通过开凿连通北海的运河,改善水运条件而持续发展。鹿特丹利用中转散装货物的机能,发展了农、矿产品加工业和造船工业(图3.21鹿特丹港口的土地利用)。中继贸易也带动了腹地近代工业的迅速发展。第二次世界大战以后,西欧各国经济复兴,鹿特丹成为欧洲联盟的大门,港湾和航空设施得到完善,港口的中转机能更加突出。现在,鹿特丹是世界最大的港口之一,腹地覆盖了欧盟的半数国家。 围海造陆 沿海地区人地矛盾激化,使人们将眼光投向大海。荷兰人从13世纪就开始围海造陆,目前,荷兰有 1/5的国土是从海中围起来的。围海造陆是缓解人多地少矛盾的重要途径,但是它需要经过充分的科学论证,特别是做好以水利工程为中心的配套建设。 在近岸浅海水域用砂石、泥土和废料建造陆地,通过海堤、栈桥或者海底隧道与海岸连接,这种新建陆地称为人工岛。世界上一些沿海发达国家如日本、美国、法国、荷兰等都已建造了人工岛。其中以海上城市(图3.22日本神户人工岛)的规模最大、功能最齐全。兴建海上城市,工程和费用巨大,需要以强大的国力作基础。 澳门人多地少,有限的土地不足以满足发展居住、绿化、交通、工业、商业等的建设需要。澳门沿岸有许多淤积成的浅滩,有的在落潮时能露出水面,澳门人将它们视为良好的后备土地资源。 100多年来,澳门人利用填海造陆的办法使土地面积扩大了1倍(表3.2澳门历年土地面积的变化和图3.23澳门历年填海范围)。 海洋环境保护 海洋环境问题包括两个方面:一是海洋污染,即污染物进入海洋,超过海洋的自净能力;二是海洋生态破坏,即在各种人为因素和自然因素的影响下,海洋生态环境遭到破坏。 (一)海洋污染 海洋污染物绝大部分于陆地上的生产过程。海岸活动,例如倾倒废物和港口工程建设等,也向沿岸海域排入污染物。污染物进入海洋,污染海洋环境,危害海洋生物,甚至危及人类的健康。 工业生产过程中排出的废弃物是海洋污染物的主要来源,它们集中在大型港口和工业城市附近。1953-1970年,日本九州岛水俣湾发生的汞污染事件,就是因为工厂在生产有机产品过程中,排出含汞废物。这些有害物质流入海洋后,逐渐在鱼和贝类体内富集。最后导致100多人严重中毒,并先后死亡。 核电站和工厂排出的冷却水,水温较高,流入河口或海中时,往往给海洋生物带来影响。施入农田的杀虫剂随雨水流进河流,或者随土壤颗粒在河口附近淤积,最终进入海洋。偶发性的海上石油平台和油轮事故,引起石油渗漏和溢出,造成海洋污染。 (二)海洋生态破坏 除海洋污染外,人类的生产活动,例如工程建设和渔业生(围垦和滥捕等),以及自然环境的变化,例如全球变暖和海平面上升,都会使海洋生态环境遭到破坏和改变。人类对某些海洋生物的过度捕捞,导致海洋生物资源数量减少,质量降低,也使部分物种濒临灭绝。有些海岸工程建设和围海造田缺乏科学论证,破坏了海岸环境和海岸带生态系统。目前,海洋开发活动还缺乏综合的、长远的规划、综合效益比较差。 石油污染和监测防治 沿海工业生产和海运航线上的船舶,是石油污染的主要来源。因此,石油污染区域集中于沿海水域和海上航道沿线。由意外事故造成的石油泄漏,因为污染迹象明显,污染物集中,危害严重,因而倍受公众的关注,也是目前治理污染的重点。 为减少意外事故的发生,很多国家在试验新的原油装载方法。有些国家配备了除污船,用来清除港口水面垃圾和污油。 海洋权益和《联合国海洋法公约》 20世纪60年代以来,出现了世界性的开发海洋热潮。海洋科学和技术迅猛发展,成为当代新技术革命的重要领域之一。为适应国际海洋开发、保护和管理的新形势,国际社会经过20多年的努力,通过了《联合国海洋法公约》,并于1994年11月16日正式生效。海洋法公约的诞生,使国际海洋法律制度发生了重大变革。例如,长期争执不休的领海宽度问题得到了解决;国际海底及其资源确立为人类的共同继承财产。 根据《联合国海洋法公约》,全球144个沿海国家除拥有12海里领海权外,其管辖海域面积可外延到200海里,作为该国的专属经济区,享有勘探、开发、利用、保护、管理海床上覆水域及底土自然资源的主权。我国管辖海域面积为473万平方千米,约相当于我国陆地面积的二分之一,因此,加强海洋综合管理显得日益重要。 《联合国海洋法公约》的诞生,为建立国际法律新秩序迈出了重要一步。但是,因为《联合国海洋法公约》要兼顾各个国家的利益和要求,还有许多不完善和不明确之处。因此,在实施过程中,必然会产生一些新的矛盾和问题。例如,在封闭和半封闭的海域,周边国家主张的200海里专属经济区就有可能存在着重叠,还有一些岛屿主权争议和渔业资源分配等问题,这些都有可能成为相邻国家关系紧张,甚至引发国际冲突的新的因素。因此,相邻国家间管辖海域划界和海洋权益,要求有关国家本着友好协商的精神,予以公平合理的解决。

9. 形成海洋能源温差的源头是

海洋温差能形成原因是太阳能。 海洋温差能也叫海洋热能,海洋中上层水温的差异蕴藏着一定的能量,被称为海水温差能。到达水面的太阳辐射能大约有60%透射到1米的水深处。 有18%能够到达海面以下10米深度,少量的太阳辐射能甚至透射到水下100米以下的深度。海水温度随水深而变化,表层海水和深层海水之间存在着20摄氏度以上的温差,是巨大的能量来源。

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map