返回首页

青州海洋防腐涂料(海洋防腐涂层)

来源:www.ascsdubai.com   时间:2023-06-11 15:24   点击:268  编辑:jing 手机版

1. 海洋防腐涂层

不是。

海洋化工研究院

青岛市金湖路4号海洋化工研究院总部

成立时间 1979年

地点 青岛市金湖路4号

海洋化工研究院(英语:Marine Chemical Research Institute),又称中国昊华化工集团公司海洋化工研究院。1979年12月26日由当时的化学工业部建立,设立时名为“化工部海洋涂料研究所”,现时是中国昊华化工集团(中国化工集团公司)旗下子公司。

现业务为在中国内地经营海洋防污涂料、重防腐涂料、环保涂料、功能材料、民用装饰涂料、胶粘剂及有关助剂的应用开发研究等,并设有博士后流动站。

目前总部位于山东省青岛市金湖路4号,由院长赵君主理。

2. 海洋防腐涂层的发展

海底阀

水下管道上的所有阀门的统称

海底阀(Subsea valve),是指应用于水下管道上的所有阀门的统称。海底阀门在水下管道主要的集中应用在海洋油气工程的水下管汇与输送管道上。同时水下阀门还在深海潜水器上有一定的应用。

中文名

海底阀

外文名

Subsea valve

设计标准

API 6DSS 水下管道阀门

内容简介

海底阀门以球阀、平板闸阀、止回阀为主,操作方式主要采用液动,ROV操作,人工操作(浅水)。

海底阀门的设计标准采用:

API 6DSS 水下管道阀门

API 17D 水下井口设备规范

对于海底阀门的开发与常规阀门的区别主要在抗外压强度对于壁厚的影响,海底工况环境(如洋流,海生物,渔网)对于阀门外部结构的影响,海底防腐涂层,电极腐蚀等。这些对于企业不光在软件设计研发方面投入大量的人员进行计算模拟,还要投入外压试验仓设备,海水腐蚀试验仓等专用检验试验设备。

3. 海洋防腐涂层厚度标准

标准一厚膜化是防腐油漆的重要标志。一般油漆的涂层干膜厚度为100μm或150μm左右,而防腐油漆干膜厚度则在200μm或300μm以上,还有500μm~1000μm,甚至高达2000μm。标准二防腐油漆能在苛刻条件下使用,并具有长效防腐寿命,防腐油漆在化工大气和海洋环境里,一般可使用10年或15年以上,即使在酸、碱、盐和溶剂介质里,并在一定温度条件下,也能使用5年以上

4. 海洋防腐涂层的防腐机理

防腐就是通过采取各种手段,保护容易锈蚀的金属物品的,来达到延长其使用寿命的目的,通常采用物理防腐,化学防腐,电化学防腐等方法。

清理等级

也即清洁度,代表性国ji标准有两种:一种是美国85年制订“sspc-”,第二种是瑞典76年制订的“sa-”,它分为四个等级分别为sa1、sa2、sa2.5、sa3,为国际惯常通用标准,详细介绍如下:

sa1级——相当于美国sspc—sp7级。采用一般简单的手工刷除、砂布打磨方法,这是四种清洁度中度蕞低的一级,对涂层的保护仅仅略好于未采用处理的工件。sa1级处理的技术标准:工件表面应不可见油污、油脂、残留氧化皮、锈斑、和残留油漆等污物。sa1级也叫做手工刷除清理级(或清扫级)。

sa2级——相当于美国sspc—sp6级。采用喷砂清理方法,这是喷砂处理中蕞低的一级,即一般的要求,但对于涂层的保护要比手工刷除清理要提高许多。sa2级处理的技术标准:工件表面应不可见油腻、污垢、氧化皮、锈皮、油漆、氧化物、腐蚀物、和其它外来物质(疵点除外),但疵点限定为不超过每平方米表面的33%,可包括轻微阴影;少量因疵点、锈蚀引起的轻微脱色;氧化皮及油漆疵点。如果工件原表面有凹痕,则轻微的锈蚀和油漆还会残留在凹痕底部。sa2级也叫商品清理级(或工业级)。

sa2.5级——是工业上普遍使用的并可以作为验收技术要求及标准的级别。sa2.5级也叫近白清理级(近白级或出白级)。sa2.5级处理的技术标准:同sa2要求前半部一样,但疵点限定为不超过每平方米表面的5%,可包括轻微暗影;少量因疵点、锈蚀引起的轻微脱色;氧化皮及油漆疵点。

sa3级——级相当于美国sspc—sp5级,是工业上的蕞高处理级别,也叫做白色清理级(或白色级)。sa3级处理的技术标准:与sa2.5级一样,但5%的阴影、疵点、锈蚀等疵点不得存在了。

随着现代工业的发展,一批新兴工业领域的出现和许多现代工程的兴建,对防腐涂料承受环境的能力和使用寿命提出了更高的要求。常用的防腐涂料已不能满足这些需要。人们提出的“重防腐涂料(heavy-dutycoating)”的概念,一般指在苛刻的腐蚀环境使用,包括底漆和面漆的配套涂料。简单地说:重防腐涂料就是使用寿命更长,可适应更苛刻的使用环境的涂料称为重防腐涂料。在化工大气和海洋环境里重防腐涂料一般可使用10年或15年以上,在酸、碱、盐和溶剂介质里,并在一定温度的腐蚀条件下,一般能使用5年以上。

5. 海洋防腐涂层的种类

您好,“防火涂料”和“CBBH涂料”都属于防火涂料的范畴,但是它们有一些区别:

1. 防火涂料是一种能够阻止火势蔓延的涂料,具有较好的防火性能。CBBH涂料是一种含有氯化聚乙烯等阻燃剂的防火涂料,具有更好的防火性能。

2. 防火涂料可以分为水性、油性和溶剂型等不同类型,而CBBH涂料一般指含有氯化聚乙烯的涂料。

3. 在使用时,防火涂料可以根据需要选择不同的防火等级,而CBBH涂料一般具有较高的防火等级,可以达到A级防火标准。

总的来说,CBBH涂料具有更好的防火性能,但可能比一般的防火涂料价格更高。在选择时,应根据具体需要进行选择。

6. 海洋防腐涂层的发展背景

Rm是柔性防水。

Rm全写是RMO,是柔性防水涂料,俗称高分子聚合物水泥防水防腐涂料:是一种专利合成高分子乳液、叠加了活性纳米二氧化硅,可用做混凝土、砖石、沥青、木材、金属等材料的修补剂,是水泥、堵缝剂、石灰以及其他粘合剂产品的完美替代品,并可提供其他修补剂无法提供的独特性能。

其特有的专利聚合成分,可以大大促进普通硅酸盐水泥的内部化合反应,使水泥内部产生一种兼具化学性和物理性的粘结力和内聚合力。

与适量的水泥和砂子混合,会产生特别高的粘结强度和柔性并且不会疲劳,是用于修补裂缝、表面重修和改造的有效产品,更是混凝土建筑防水、防腐的保护者。

7. 海洋防腐涂层厚度

《钢结构工程施工质量验收规范》GB50205-2001 第十四节:“钢结构涂装工程”中第14.2.2主控项目:“涂料、涂装遍数、涂层厚度均应符合设计要求.当设计对涂层厚度无要求时,涂层干漆膜总厚度:室外应为150μm,室内应为125μm,其允许偏差为-25μm.每遍涂层干漆膜厚度的允许偏差为-5μm.”

检查数量:按构件数抽查10%,且同类构件不应少于3件.

检验方法:用干漆膜测厚仪检查.每个构件检测5处,每处的数值为3个相距50mm测点涂层干漆膜厚度的平均值.

二、钢结构防腐油漆厚度是多少

不同的油漆,不同的腐蚀环境防腐油漆厚度是不同的.

C2腐蚀环境(腐蚀低):使用寿命/干膜厚度:低:80;中:150;高:200;

C3腐蚀环境(腐蚀中等):使用寿命/干膜厚度:低:120;中:160;高:200;

C4腐蚀环境(腐蚀高):使用寿命/干膜厚度:低:160;中:200;高:240;

C5-I腐蚀环境(工业腐蚀很高):使用寿命/干膜厚度:低:200;

C5-M腐蚀环境(海洋腐蚀很高):使用寿命/干膜厚度:中:280;高:320;

所以在喷涂油漆时要看底材处于什么样的腐蚀环境,腐蚀越严重,漆膜越厚.

三、相关概念

1、漆膜

科技名词定义 中文名称:漆膜 英文名称:varnish 定义:在润滑中,燃料和润滑油或轴承材料的有机组分,在高温和空气中氧化和(或)聚合所产生的褐色或黑色的薄层漆状沉积物(固体碳化物)。 应用学科:机械工程(一级学科);摩擦学(二级学科);润滑(二级学科)

2、涂层

涂层(coating)是涂料一次施涂所得到的固态连续膜,一般涂料所得涂层较薄,约在20~50微米,厚浆型涂料一次可得厚达1毫米以上的涂层。涂层是为了防护、绝缘、装饰等目的涂布于金属、织物、塑料等基体上的塑料薄层,依据所用涂料种类有不同的称呼,如底漆的涂层称为底漆层,面漆的涂层称为面漆层。

8. 海洋防腐涂层的研究现状

在化工大气和海洋环境里重防腐涂料一般可使用10年或15年以上,在酸、碱、盐和溶剂介质里,并在一定温度的腐蚀条件下,一般能使用5年以上。

C3 中等 城市和工业大气,中等的二氧化硫污染以及低盐度沿海区域,高湿度和有些空气污染的生产厂房内,如食品加工厂、洗衣场、酒厂、乳制品工厂等。港口区的钢结构,如水闸、锁具、防波堤、码头;海上结构

9. 海洋防腐涂层材料

耐海水。因为Gs防水涂料是专门针对海洋工程及海岸防护的高性能涂料,具有优异的耐水性和抗腐蚀性,可以有效地保护混凝土结构不受海水侵蚀。同时,该涂料还能够耐受紫外线辐射和极端气候条件,因此在海洋工程中得到广泛应用。除了Gs防水涂料外,还有其他的海洋特种涂料,如船舶特种涂料、海洋防护涂料等,它们在海洋工程中起着举足轻重的作用,保障着工程建设的质量和安全性。由于海水对于建筑材料的腐蚀性极强,大多数普通的涂料在海洋工程中难以使用,因此研发出这些高性能的海洋特种涂料,具有重要的实际应用意义。

10. 海洋防腐涂层发展前景

FBE环氧粉末防腐结构:采用静电喷涂工艺在钢管表面涂敷环氧粉末,一次成膜。

该涂层具有涂敷操作简便,无污染,涂层抗冲击和抗弯曲性能好,耐温性高等优点。

2PE/3PE防腐2PE/3PE防腐结构:在钢管表面静电喷涂环氧粉末并侧向缠绕粘接剂,侧向缠绕聚乙烯防腐层,结合三者优良性能,从而显著提高了防腐管道的整体品质。具有耐化学腐蚀,耐阴极剥离,耐机械破坏性能。环氧煤沥青防腐环氧煤沥青防腐结构:由环氧树脂+煤焦油沥青+填料制成的防腐涂料在钢管表面上用玻璃布作为加强涂敷形成防腐层,常用于管道外壁防腐。厚度一般为0.5~1.0mm。环氧熔结粉末防腐FBE/2FBE使用寿命:40年到50后高密度聚乙烯外套防腐高密度聚乙烯外套防腐结构:在钢管外表面包裹高密度聚乙烯材料制成,具有极高的机械强度和优良的耐腐蚀性能,可以保护钢管在运输,安装及使用过程中避免因外界因素而造成的破坏。

11. 海洋防腐涂层的发展论文

16世纪的医学

封建社会后期,手工业和商业开始发展,生产力的增长促进了对新市场的寻找。1492年哥伦布发现新大陆,1497年达·伽马发现好望角,1519~1522年麦哲伦环绕世界……,这些都加强了东西方文化的交流,许多药物也由东方传入欧洲。美洲发现后,欧洲也有了金鸡纳、愈创木、可可果。

由于资本主义的兴起,首先在意大利形成了资产阶级的知识分子。他们的特点是敢于向教会思想挑战,反对宗教迷信的束缚。他们的口号是“我是人,人的一切我应该了解”,以此来反对神学的统治。他们一方面传播新文化,一方面竭力钻研和模仿古代希腊的文化,因此称为“文艺复兴”。1543年哥白尼出版《天体运行论》,标志着科学史上文艺复兴的开始。

文艺复兴运动中,怀疑教条、反对权威之风兴起。于是医学界也产生了一场以帕拉切尔苏斯为代表的医学革命。

中世纪的医学学校中,主要讲阿维森纳的《医典》,以及加伦和希波克拉底的著作。教师照本宣科,一切墨守陈规,毫无生气。文艺复兴的狂潮,很快就波及医学领域。帕拉切尔苏斯首先指出人体的生命过程是化学过程,他在巴塞尔大学任教时主张用流行的德语写书和讲演,使医学易为大众所接受,这是一件伟大的改革。他重视实践,反对烦琐的经院哲学,反对中世纪的传统和权威观念。他说“没有科学和经验,谁也不能成为医生。我的著作不是引证古代权威的著作,而是依靠最大的教师—经验写成的”。他勇敢地向墨守陈规和盲目崇拜进行斗争,公开焚毁了加伦和阿维森纳的著作。

在封建社会,各民族无例外地禁止解剖尸体,因此人体解剖学得不到发展。这个时代的医书,解剖图几乎全是根据动物内脏绘成的。而文艺复兴时代的文化,把人作为注意的中心,这反映在医学领域内,人们首先重视的就是人体的构造。

首先革新解剖学的是意大利的达·芬奇,他认为作为现实主义的画家,有必要深入了解人的解剖结构,尤其需要了解骨骼与肌肉,于是他开始从事人体解剖。他所绘制的700多幅解剖图,传至今日只有150余幅,画得大都准确、优美。

达·分奇首先对加伦的解剖学发生疑问。他曾往气管吹入空气,但无论如何用力,也不见心脏膨胀起来,由此证明加伦所谓肺与心相通的学说是错误的。他还检查过心脏的构造与形态,他所画的心脏图较以往有关图画正确得多。此外,他还发现了主动脉根部瓣膜的活动及其性质,证明瓣膜的作用在于阻止血液回流。他所提到的心血管方面的问题,不久就引起了医学家们的注意。

根据直接的观察来写作人体解剖学教科书是由维萨里完成。维萨里肄业于卢万大学,后转入巴黎大学。当时,这两所大学讲解剖时,仍是教授高坐椅上讲课,助手和匠人在台下操作,而且一年内最多只允许进行三或四次解剖。维萨里不满足这种状况,曾夜间到野外去盗窃尸体来进行解剖。当时意大利的帕多瓦大学有欧洲最好的解剖教室,于是他就到那里任教。1543年,他将工作中积累起来的材料整理成书,公开发表。这本书就是《人体构造论》。维萨里虽然也受到当时保守派的指责,但他的学生们发展了解剖学。

中世纪,由于手术操作污秽而受到轻视,一般的外科手术都由理发师进行。法国的帕雷就是理发师-外科医生,他曾任军医,在战伤处理中,用软膏代替沸油处理火器伤,取得了很好的疗效;他还用结扎法取代烧灼法进行止血;做过异位胎儿倒转术;创制过假手假足。他不懂拉丁文,又不信仰天主教,他的作品用本国文字法文写成的。

14~16世纪,传染病非常流行,曾夺去无数人的生命。这时弗拉卡斯托罗提出有关传染病的新见解,认为传染病是由一种能繁殖的“粒子”造成的,还指出了三条传染途径。

总之,16世纪欧洲医学摆脱了古代权威的束缚,开始独立发展,其主要成就是人体解剖学的建立。这既表明一门古老的学科在新的水平上复活,又标志着医学新征途的开始。

17世纪的医学

在17世纪,英国科学处于领先地位。

17世纪,量度观念已很普及。最先在医学界使用量度手段的是圣托里奥,他制作了体温计和脉搏计,还制造了一个像小屋似的大秤,可在其中生活、睡眠、运动、进食。在排泄前后,他都秤量自己的体重,如此不厌其烦地进行了30余年。他发现体重在不排泄时也在减轻,于是认为其原因是“不易觉察的出汗”,这可以说是最早的新陈代谢研究。

实验、量度的应用,使生命科学开始步入科学轨道,其标志是哈维发现了血液循环。哈维毕业于帕多瓦大学,在他以前,帕多瓦大学的解剖学家们曾相继发现并解释了血液在心脏循环的过程。1553年,西班牙学者塞尔维特确认血液自右心室流入左心室时,不是经过中隔上的孔,而是经过肺脏进行了“漫长而奇妙的迂回”。

哈维最先在科学研究中应用活体解剖的实验方法,直接观察动物机体的活动。同时,他还精密地算出自左心室流入总动脉,和自右心室流入肺动脉的血量。他分析认为血液绝不可能来自饮食,也不可能留在身体组织内,他断定自左心室喷入动脉的血,必然是自静脉回归右心室的血。这样就发现了血液循环。哈维于1628年发表了著作《心脏运动论》。

随着实验的兴起,出现了许多科学仪器,显微镜就是17世纪初出现的。显微镜把人们带到一个新的认识水平。在这以后,科学家利用显微镜取得了一系列重要发现。

意大利马尔皮吉观察动物组织,发现了毛细血管,他还观察过脾脏、肾脏等组织的微细结构。荷兰业余科学家列文胡克也作过许多显微镜观察,最先看到精子、血细胞;他在观察蝌蚪的尾巴时发现血细胞从毛细血管中流过的情形。他和马尔皮基的观察填补了哈维在血液循环学说中留下来的空白,说明血液怎样由动脉进入静脉的。但是,17世纪的显微镜观察很不深入,真正的人体组织学是19世纪才发展起来。

17世纪时物理学、化学和生物学都有了进步,医学家也开始不满意过去的医学学说,出现了一些新的学说,这主要有三种派别。其一是物理学派,医学机械论者、哲学家和数学家笛卡尔对医学的见解就是代表。他主张一切疼痛、恐怖等都是机械的反应;认为人有灵魂,而灵魂存在于松果体中。

化学派则以化学原理解释生理和病理现象,荷兰人西尔维乌斯可为其代表。他曾致力于盐类的研究,认为身体的三要素是水银、盐和硫磺;“酵素”在生命活动和生理功能上有重要的作用。他是加伦学说的信奉者,认为疾病的发生是酸性和碱性的平衡失调所致,所以其治疗方法也是以平衡两者的关系为主。这个学派是当时医学上有势力的一派,他们在唾液、胰液和胆汁方面的研究对生理学有一定的贡献。他们认为血液是中枢,一切病理过程都由血液产生。对所有疾病都用化学原理进行解释和治疗。

另一位英国的化学派代表,牛津大学的威利斯注重临床观察。在西方他第一个知道糖尿病的尿是甜的,所以糖尿病也曾称威利斯氏病,他记述过现在所称的重症肌无力,还描述并命名过产褥热和大脑基底动脉环。

还有一派叫做活力派,认为生命现象不能受物理或化学的支配,生命现象是由生命特有的生命力来维持的,这种生命力亦即活力。这个学派的代表人物是斯塔尔,他认为疾病的原因在于生命力的减少,而其消失就是死亡。此派到18世纪更为盛行。

这三个学派虽然开始于17世纪,但其影响都很大,直到20世纪各种学派中还能找到它们的踪迹。

内科学直到17世纪一直没有什么进展,医术与中世纪相仿,四体液论依然是疾病理论的基础。由于当时医生多研究解部学和生理学,似乎忘记了医生的责任,所以17世纪的临床医学家西德纳姆指出“与医生最有直接关系的既非解剖学之实习,也非生理学之实验,乃是被疾病所苦之患者。故医生的任务首先要正确探明痛苦之本质,也就是应多观察同样病患者的情况,然后再研究解剖、生理等知识,以导出疾病之解释和疗法”。同时,他非常拥护希波克拉底关于“自然治愈力”的思想。这既说明了当时临床学还很落后,也表明他对人体抗病能力的重视。

18世纪的医学

到18世纪,医学家已经解剖了无数尸体,对人体的正常构造已有了清晰的认识,在这基础上,他们就有可能认识到若干异常的构造。

意大利病理解剖学家莫尔加尼于1761年发表《论疾病的位置和原因》一书,描述了疾病影响下器官的变化,并且据此对疾病原因作了科学的推测。他把疾病看作是局部损伤,而且认为每一种疾病都有它在某个器官内的相应病变部位。在他以后医师才开始用“病灶”解释症状,这种思想对以后的整个医学领域影响甚大。

18世纪后半期,奥地利医生奥恩布鲁格发明了叩诊。他的父亲是酒店老板,常用手指敲击大酒桶根据声音猜测桶里的酒量。后宋,奥恩布鲁格把这个方法用在人的胸腔,以寻找“病灶”。经过大量经验观察,包括尸体解剖追踪,他创立应用至今的叩诊法。但叩诊法的推广应用,还是19世纪的事。

在17世纪以前,欧洲并无有组织的临床教育,学生到医校学习,只要读书,经过考试及格就可领到毕业证书。17世纪中叶,荷兰的莱顿大学开始实行临床教学,并取消宗教派别的限制,吸收了不少外国学生。

到18世纪,临床医学教学兴盛起来,莱顿大学在医院中设立了教学病床,布尔哈维成了当时世界有名的临床医学家。布尔哈维充分利用病床教学,他在进行病理解剖之前,尽量给学生提供临床的症候以及这些与病理变化关系的资料,这是以后临床病理讨论会的先驱。

詹纳发明牛痘接种法是18世纪预防医学的一件大事。16世纪中国已用人痘接种来预防天花。18世纪初,这种方法经土耳其传到英国,詹纳在实践中发现牛痘接种比人痘接种更安全。他的这个改进增加了接种的安全性,为人类最终消灭天花作出贡献。

19世纪的医学

19世纪初,细胞学说被提了出来。到19世纪中叶,德国病理学家菲尔肖倡导细胞病理学,将疾病研究深入到细胞层次。他学说的基本原理包括:细胞来自细胞;机体是细胞的总和;疾病可用细胞病理来说明。

19世纪中叶,由于发酵工业的需要,再加上物理学、化学的进步和显微镜的改进,细菌学也随之诞生了。法国人巴斯德开始研究发酵的作用,后研究微生物,证明发酵及传染病都是微生物引起的;德国人科赫发现霍乱弧菌、结核杆菌及炭疽杆菌等,并改进了培养细菌的方法和细菌染色方法,还提出科赫三定律。他们的工作奠定了微生物学的基础。

19世纪后30年,是细菌学时代,大多数主要致病菌在此时期内先后被发现。巴斯德还研究了鸡的霍乱、牛羊炭疽病及狂犬病等,并用减弱微生物毒力的方法首先进行疫苗的研究,从而创立了经典免疫学。以后,在巴斯德研究所工作的俄国人梅契尼科夫,系统阐述了吞噬现象及某些传染病的免疫现象;提出了微生物间的对抗和它们变异的论述;20世纪初,发现乳酸菌与病原菌在人肠中相互拮抗,并用乳酸菌制剂来治疗某些肠病。他对早期免疫学作出很大贡献。

19世纪初期,在药理学方面,一些植物药的有效成分先后被提取出来。例如,1806年由鸦片中提取出吗啡;1819年由金鸡纳树皮中提取出奎宁;至19世纪中叶,尿素、氯仿等已合成;1859年水杨酸盐类解热镇痛药合成成功;19世纪末精制成阿斯匹林。其后各种药物的合成精制不断得到发展。以后,人们开始研究药物的性能和作用。以临床医学和生理学为基础,以动物实验为手段,产生了实验药理学。

19世纪,人们应用物理、化学的理论和实验方法研究机体,从而逐渐兴起实验生理学。法国的马让迪,德国人弥勒和法国人贝尔纳先后用动物实验对神经和消化等系统进行了大量生理研究。他们的工作奠定了现代生理学研究的科学基础。

由于病理解剖学和细胞病理学的影响,当时的临床医学中特别注意对内脏器官病理变化的研究和诊断,想尽各种方法寻找“病灶”,使诊断方法不断充实,诊断手段和辅助诊断工具不断增多。到19世纪末,检查工作又或多或少地从直接观察病人转变为研究化验室的检验结果。

发明听诊的是拉埃内克,他是法国病理学家、临床家。他从希波克拉底的著作中,得到对于心肺可以听诊的启示。起先他用耳直接听诊,后来制成纸制听诊器,后用木制。他检查了许多病人,研究了用听诊器发现的各种最微小的现象,并进行了许多尸体解剖,把解剖结果与临床现象相对照,从而改进了听诊法。1819年,他发表论文《间接听诊法》,并根据这种新的检查方法用来诊断肺和心脏的疾病。

许多临床诊断辅助手段如血压测量、体温测量、体腔镜检查都是在19世纪开始应用的。利用新的照明装置和光学器具,一系列光学器械相继发明和使用。较早的有德国人赫尔姆霍茨的检眼镜,继之喉镜、膀胱镜、食管镜、胃镜、支气管镜等先后发明,这丰富了临床内科诊断手段,并使其后体腔内进行治疗成为可能。

由于化学的发展,临床医学利用化学分析检验方法以检查血液的内容物,大大改进了诊断法。显微镜学的不断进步,促使形态诊断学在临床逐步取得重要地位,它研究机体体液和固体部分的组织结构和有形成分,并研究正常和异常排泄物的结构成分。至19世纪末和20世纪初,由于微生物学和免疫学的成就,医生的诊断方法更为丰富。

19世纪之前,外科非常落后。疼痛、感染、出血等主要基本问题未得解决,这限制了手术的数量和范围。19世纪中叶,解剖学的发展和麻醉法、防腐法和无菌法的应用,对外科学的发展,起了决定性的作用。

首先是麻醉法的发明。19世纪中叶一氧化二氮、乙醚、氯仿相继被用作全身麻醉药,外科手术能够在无痛情况下施行,这是外科学的一大进步,是外科手术学得以发展的前提。19世纪末又发明了局部麻醉的方法,克服了全麻手续繁杂、副作用多的不足。

创伤手术后的化脓并发症是最麻烦的事,在巴斯德发现病原微生物以前,维也纳的产科医生塞梅尔魏斯于1847年证明,产褥热的真正原因是手和产科器械带进了感染因素,主张用石灰水洗手。

根据巴斯德的发现,英国外科医生利斯特认为伤口中的腐烂和分解过程是由微生物所引起。1865年他用石炭酸消毒法进行复杂骨折手术荻得成功,他还用石炭酸消毒手术室、手术台、手术部位和伤口。并用复杂的包扎法包扎伤口。防腐法大大地减少了创伤化脓和手术后的死亡率,但还是没有完全解决伤口的感染问题。

1886年贝格曼采用热压消毒器进行消毒外科,才标志着真正进入了无菌手术的时代。止血方面也有些初步进步,如止血钳、止血带以及血管结扎的方法的应用等。

以上几方面的重要成就,为外科的发展铺平了道路。从此外科学开始迅速发展。19世纪末期,体腔外科普遍发达,这样许多临床专业(如妇科、泌尿科、眼科等)中除进行内科处置外,外科方法也获得重要地位。

18世纪时预防医学有某些改进,但大多是个人努力的结果,实施范围也很有限。到19世纪,预防医学和保障健康的医学对策已逐渐成为立法和行政的问题。英国于1848年设立卫生总务部,规定一些预防疾病的法令。

之后不久,英国发生霍乱大流行,死亡约六万人。统计资料显示疾病的传染媒介是饮用水,于是采取了适当的预防方法,而逐渐遏止了疫情。

使卫生学成为一门精确科学的人是德国的佩滕科弗,他将物理和化学的研究方法应用到卫生学方面,研究了空气、水、土壤对人体的影响;测定了大气中二氧化碳对呼吸的意义,并发明了测定空气中二氧化碳含量的方法;研究了住宅的通气和暖气设备。继他之后,研究职业病的劳动卫生学、研究食品工业的营养和食品卫生学相继产生。

护理工作历史悠久,但从事护理的人长期地位低下,19世纪之前工作条件一直十分恶劣,人员素质差,待遇低。英国的南丁格尔曾在德国学习护理知识,在克里米亚战争中率护士进行战地救护,收效显著。1860年她创立护士学校,传播其护理学思想,提高护理地位,使护理学成为了一门科学。

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map