返回首页

海洋中的畸形波(波形畸变的类型有)

来源:www.ascsdubai.com   时间:2023-05-28 11:44   点击:90  编辑:jing 手机版

1. 波形畸变的类型有

母线保护是保证电网安全稳定运行的重要系统设备,它的安全性、可靠性、灵敏性和快速性对保证整个区域电网的安全具有决定性的意义。迄今为止,在电网中广泛应用过的母联电流比相式差动保护、电流相位比较式差动保护、比率制动式差动保护,经各发、供电单位多年电网运行经验总结,普遍认为就适应母线运行方式、故障类型、过渡电阻等方面而言,无疑是按分相电流差动原理构成的比率制动式母差保护效果最佳。

但是随着电网微机保护技术的普及和微机型母差保护的不断完善,以中阻抗比率差动保护为代表的传统型母差保护的局限性逐渐体现出来。从电流回路、出口选择的抗饱和能力等多方面,传统型的母差保护与微机母差保护相比已不可同日而语。尤其是随着变电站自动化程度的提高,各种设备的信息需上传到监控系统中进行远方监控,使传统型的母差保护无法满足现代变电站运行维护的需要。

下面通过对微机母差保护在500 kV及以下系统应用的了解,依据多年现场安装、调试各类保护设备的经验,对微机母差保护与以中阻抗比率差动保护为代表的传统型母差保护的原理和二次回路进行对比分析。

1微机母差保护与比率制动母差保护的比较

1.1微机母差保护特点

a. 数字采样,并用数学模型分析构成自适应阻抗加权抗TA饱和判据。

b. 允许TA变比不同,具备调整系数可以整定,可适应以后扩建时的任何变比情况。

c. 适应不同的母线运行方式。

d. TA回路和跳闸出口回路无触点切换,增加动作的可靠性,避免因触点接触不可靠带来的一系列问题。

e. 同一装置内用软件逻辑可实现母差保护、充电保护、死区保护、失灵保护等,结构紧凑,回路简单。

f. 可进行不同的配置,满足主接线形式不同的需要。

g. 人机对话友善,后台接口通讯方式灵活,与监控系统通信具备完善的装置状态报文。

h. 支持电力行业标准IEC 608705103规约,兼容COMTRADE输出的故障录波数据格式。

1.2基本原理的比较

传统比率制动式母差保护的原理是采用被保护母线各支路(含母联)电流的矢量和作为动作量,以各分路电流的绝对值之和附以小于1的制动系数作为制动量。在区外故障时可靠不动,区内故障时则具有相当的灵敏度。算法简单但自适应能力差,二次负载大,易受回路的复杂程度的影响。

但微机型母线差动保护由能够反映单相故障和相间故障的分相式比率差动元件构成。双母线接线差动回路包括母线大差回路和各段母线小差回路。大差是除母联开关和分段开关外所有支路电流所构成的差回路,某段母线的小差指该段所连接的包括母联和分段断路器的所有支路电流构成的差动回路。大差用于判别母线区内和区外故障,小差用于故障母线的选择。

这两种原理在使用中最大的不同是微机母差引入大差的概念作为故障判据,反映出系统中母线节点和电流状态,用以判断是否真正发生母线故障,较传统比率制动式母差保护更可靠,可以最大限度地减少刀闸辅助接点位置不对应而造成的母差保护误动作。

1.3对刀闸切换使用和监测的比较

传统比率制动式母差保护用开关现场的刀闸辅助接点,控制切换继电器的动作与返回,电流回路和出口跳闸回路都依赖于刀闸辅助接点和切换继电器接点的可靠性,刀闸辅助接点和切换继电器的位置监测是保护屏上的位置指示灯,至于继电器接点好坏,在元件轻载的情况下无法知道。

微机保护装置引入刀闸辅助触点只是用于判别母线上各元件的连接位置,母线上各元件的电流回路和出口跳闸回路都是通过电流变换器输入到装置中变成数字量,各回路的电流切换用软件来实现,避免了因接点不可靠引起电流回路开路的可能。

另外,微机母差保护装置可以实时监视和自检刀闸辅助触点,如各支路元件TA中有电流而无刀闸位置;两母线刀闸并列;刀闸位置错位造成大差的差电流小于TA断线定值但小差的差电流大于TA断线定值时,均可以延时发出报警信号。微机母差保护装置是通过电流校验实现实时监视和自检刀闸辅助触点,并自动纠正刀闸辅助触点的错误的。运行人员如果发现刀闸辅助触点不可靠而影响母差保护运行时,可以通过保护屏上附加的刀闸模拟盘,用手动强制开关指定刀闸的现场状态。

1.4对TA抗饱和能力的对比

母线保护经常承受穿越性故障的考验,而且在严重故障情况下必定造成部分TA饱和,因此抗饱和能力对母线保护是一个重要的参数。

1.4.1传统型母差保护

a. 对于外部故障,完全饱和TA的二次回路可以只用它的全部直流回路的电阻等值表示,即忽略电抗。某一支路TA饱和后,大部分不平衡电流被饱和TA的二次阻抗所旁路,差动继电器可靠不动作。

b. 对于内部故障,TA至少过1/4周波才会出现饱和,差动继电器可快速动作并保持。

1.4.2微机型母差保护

微机母差保护抛开了TA电抗的变化判据,使用数学模型判据来检测TA的饱和,效果更可靠。并且在TA饱和时自动降低制动的门槛值,保证差动元件的正确动作。TA饱和的检测元件有两个:

a. 采用新型的自适应阻抗加权抗饱和方法,即利用电压工频变化量差动元件和工频变化量阻抗元件(前者)与工频变化量电压元件(后者)相对动作时序进行比较,区内故障时,同时动作,区外故障时,前者滞后于后者。根据此动作的特点,组成了自适应的阻抗加权判据。由于此判据充分利用了区外故障发生TA饱和时差流不同于区内故障时差流的特点,具有极强的抗TA饱和能力,而且区内故障和一般转换型故障(故障由母线区外转至区内)时的动作速度很快。

b. 用谐波制动原理检测TA饱和。这种原理利用了TA饱和时差流波形畸变和每周波存在线性传变区等特点,根据差流中谐波分量的波形特征检测TA饱和。该元件抗饱和能力很强,而且在区外故障TA饱和后发生同名相转换性故障的极端情况下仍能快速切除故障母线。

从原理上分析,微机型母差保护的先进性是显而易见的。传统型的母差判据受元件质量影响很大,在元件老化的情况下,存在误动的可能。微机母差的软件算法判据具备完善的装置自检功能,大大降低了装置误动的可能。

1.5TA二次负担方面的比较

比率制动母差保护和微机母差保护都是将TA二次直接用电缆引到控制室母差保护屏端子排上,二者在电缆的使用上没有差别,但因为两者的电缆末端所带设备不同,微机母差是电流变换器,电流变换器二次带的小电阻,经压频转换变成数字信号;而传统中阻抗的比率制动式母差保护,变流器二次接的是165~301 Ω的电阻,因此这两种母差保护二次所带的负载有很大的不同,对于微机母差保护而言,一次TA的母差保护线圈所带负担很小,这极大地改善了TA的工况。

2差动元件动作特性分析与对比

2.1比率差动元件工作原理的对比

常规比率差动元件与微机母差保护工作原理上没有本质的不同,只是两者的制动电流不同。前者由本母线上各元件(含母联)的电流绝对值的和作为制动量,后者将母线上除母联、分段电流以外的各元件电流绝对值的和作为制动量,差动元件动作量都是本母线上各元件电流矢量和绝对值。

2. 电网波形畸变

总谐波畸变率,在电气工程学科中表征波形相对正弦波畸变程度的一个性能参数,缩写为THD(Total Harmonics Distortion)。其定义为全部谐波含量均方根值与基波均方根值之比,用百分数表示。

3. 波形畸变的主要类型有

谐波的危害:1、 谐波电流进入电网后,引起电网的电压畸变,使电能质量变差和浪费电网的容量。2、当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。3、谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。4、由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。

谐波的抑制方法:1、在设计整机电源时,可给予较大贮备量,一般选取0.5~1倍余量。2、增加换流装置的相数;3、 增装动态无功补偿装置:4、降低谐波源的谐波含量:在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。

4. 波形畸变的类型有哪些

不同的配电终端,会有不同。 由于大功率非线性设备的大量使用,目前电网的电能质量在不断降低,波形畸变率有普遍增长的趋势,因此,电网治理越来越得到重视。 目前电网的电压波形畸变率大概在1%~5%范围之内。

5. 波形畸变的类型有几种

电流谐波畸变率的标准如下:

根据国家标准GB/14549-1993的文件要求,电压谐波畸变率应该控制在5%以内,电流由于率波次数不一样,标准也不致。

一般而言,5次谐波电流应该小于62A,7次谐波电流应该小于32A,所以谐波电流的畸变率应该控制在5%以内。而对于高于10KV的高压电网,谐波要求更高,不超过4%。

6. 波形畸变是什么意思

没危害亲爱的

也不存在什么高次谐波

一是谐波分量很难产生

二是谐波分量即使产生了,幅值也非常小,谐波次数越高,幅值越小

三是变电站有各类消谐装置,各次主要的谐波都能消得灰飞烟灭

四是你都五十米远了,那还怕个什么,变电站工作人员工作时候跟500kV都才隔10米左右都没事儿,就算有辐射人家是你25倍,呆了二十多年的老骨头身体健康得很,而且你们担心的致癌,变电站不准抽烟不准喝酒单位1000多号人没一个人得癌症,而且再强的谐波,毕竟球面波,都会衰减,重要的还是分量大小。如果50米高次谐波分量还能大到影响健康,变电站里快都买坟地吧

五是变压器波形畸变?开什么国际玩笑,大部分变压器连额定容量都不会达到,更别说过载了。而且即使畸变,各次分量关系也请参考第二条

这篇文章一看就是没怎么认真学工程电磁场和信号的人写的。按照这个高次谐波无论分量幅值都罪无可恕而且无限距离传输的说法,我就跟你说个事儿,你拿个空调遥控器,一直按一个键,里面直流电导通,此时信号波形是阶梯波,按照傅立叶变换这个时候从0到无穷,各次谐波分量都有而且不少,还不像变电站里面次数越高越衰减。如果电磁屏蔽不好,有电磁波扩散出来,那几分钟后,按照这篇文章的理论,这些高次谐波瞬间充满整个地表球面,然后高次谐波反正分量不管多少都是杀人如麻,那地球人很快就死绝了,究其原因,是因为你用了空调遥控器

7. 波形畸变因数

谐波畸变率是衡量电压波形畸变程度的数值。

在理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备。

这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。

谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变,通常以谐波来表征。

电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率,用英文缩写THDu表示。

8. 波形畸变率范围

1 需要综合考虑谐波的产生和传输方式,以及人体对谐波的生理反应,来判断谐波的危害程度。2 谐波是电力系统中电能质量问题的一个主要方面,产生方式包括非线性负载和谐波发生器。谐波会对电网、电力设备和电子设备造成损害。而人体对谐波的生理反应包括电磁辐射、视觉、听觉和心血管系统等多个方面。3 为了判断谐波的危害程度,需要先了解谐波产生的原因和传输方式,然后结合人体对谐波的生理反应进行评估,比如利用专业的谐波分析仪进行测试和评估。同时,相关行业和政府需要建立统一的谐波危害评价标准和法律法规,加强对谐波危害的监控和管理。

9. 波形畸变的类型有什么

理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变。通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率,用英文缩写THDu表示。

电压谐波畸变率以各次谐波电压的均方根值与基波电压有效值之比的百分数来表示。

电压谐波畸变率THDu=√(U2*U2+U3*U3+...+Un*Un)*100%/ U1

式中Un--第n次谐波电压有效值,U1--基波电压有效值

10. 波形变形是什么

正弦波传输过程中变形成距形波,尖形波等杂波。仍然保持着正弦波形态 。

11. 波形畸变的类型有哪几种

1、电压是正弦波,作用于非线性元件。由于元件的非线性,电流不会与电压同步变化。产生的电流不能为正弦波,正弦波被归类为谐波,使用非线性元件时会产生谐波。

2、在理想的电源系统中,电流和电压是纯正弦波。当电流流经与施加电压不成线性关系的负载时,会形成非正弦电流。因为非线性元件与施加的电压没有线性关系,所以会产生谐波。

3、不符合欧姆定律的导体和设备,即电流和电压不成比例的电气组件,称为非线性组件。非线性元件是电气材料,其电流与施加在其上的电压不成比例。即,其电阻随着外部条件的变化而变化。

4、谐波是数学或物理概念,是指可以由与最小正周期相同的常数,正弦和余弦函数的线性组合表示的周期或周期波形的一部分。严格来说,谐波是指电流中包含的频率是基波的整数倍的电量,通常是指周期性非正弦波的傅立叶级数分解,其余部分则来自基波频率的电流产生的电量。

5、广义上讲,交流电网的有功成分是工频单个频率,因此与电源频率不同的任何成分都可以称为谐波。此时,“谐波”一词的含义就会与原来的意愿不一样。术语“分数谐波”,“间谐波”和“次谐波”仅是由于谐波的广泛概念。产生谐波的主要原因如下:由于将正弦电压施加到非线性负载上,因此基波电流失真并产生谐波。主要的非线性负载是UPS,开关电源,整流器,变频器,逆变器等。

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map