返回首页

海洋气溶胶反演(气溶胶反演原理)

来源:www.ascsdubai.com   时间:2023-05-02 04:35   点击:150  编辑:jing 手机版

1. 气溶胶反演原理

NOAA卫星是美国国家海洋大气局的第三代实用气象观测卫星,其轨道是接近正圆的太阳同步轨道,轨道高度为870千米和833千米,轨道倾角为98.9°和98.7°,周期为101.4分钟。NOAA的应用目的是日常的气象业务,平时有两颗卫星运行。

传感器

高级甚高分辨率辐射(AVHRR/2)和泰罗斯垂直分布探测仪TOVS。

AVHRR/2是以观测云的分布、地表(主要是海域)的温度分布等为目的的遥感器,TOVS是测量大气中气温及温度的垂直分布的多通道分光计,由高分辨率红外垂直探测仪(HIRS/2)、平流层垂直探测仪(SSU)和微波垂直探测仪(MSU)组成。

AVHRR是NOAA系列卫星的主要探测仪器,它是一种五光谱通道的扫描辐射仪,包括5个波段,可见光红色波段、近红外波段、中红外波段和两个热红外波段。

Terra卫星

Terra卫星是EOS计划中第一星,沿地球近极地轨道航行,高度是705km,它在早上当地同一时间经过赤道,此时陆地上云层覆盖为最少,它对地表的视角的范围最大。Terra的轨道基本上是和地球的自转方向相垂直,所以它的图像可以拼接成一幅完整的地球总图像。

传感器

Terra卫星上共有五种传感器,能同时采集地球大气、陆地、海洋和太阳能量平衡等信息:云与地球辐射能量系统CERES(US)、中分辨率成像光谱仪MODIS(US)、多角度成像光谱仪MISR(US)、先进星载热辐射与反射辐射计ASTER(JP)和对流层污染测量仪MOPITT(CAN)。

中巴地球资源卫星

中巴地球资源卫星(CBERS,又称资源一号)是我国第一代传输型地球资源卫星,太阳同步轨道卫星。

传感器

CBERS-02B传感器是具有高、中、低三种空间分辨率的对地观测卫星,搭载的2.36米分辨率的HR相机改变了国外高分辨率卫星数据长期垄断国内市场的局面,在国土资源、城市规划、环境监测、减灾防灾、农业、林业、水利等众多领域发挥重要作用。

CCD相机(CCD):CCD相机在星下点的空间分辨率为19.5米,扫描幅宽为113公里。它在可见、近红外光谱范围内有4个波段和1个全色波段。具有侧视功能,侧视范围为±32°。相机带有内定标系统。

高分辨率相机(HR):2.36米分辨率的HR相机

宽视场成像仪(WFI):宽视场成像仪(WFI)有1个可见光波段、1个近红外波段,星下点的可见分辨率为258米,扫描幅宽为890公里。由于这种传感器具有较宽的扫描能力,因此,它可以在很短的时间内获得高重复率的地面覆盖。WFI星上定标系统包括一个漫反射窗口,可进行相对辐射定标。

风云三号气象卫星

风云三号气象卫星是为了满足中国天气预报、气候预测和环境监测等方面的迫切需求建设的第二代极轨气象卫星,由三颗卫星组成(FY-3A卫星、FY-3B卫星、FY-3C卫星)。

传感器

可见光红外扫描辐射计:这一遥感器是由 FY -1 继承下来的,仍具有10个通道,但对 1 个通道的光谱范围作了调整 , 即将0. 94μ m 通道调整为1.325~1.395μm。无论在 FY-3 还是在 NOAA 卫星中,扫描辐射计都是一个最重要的基本的探测器,用它的资料可生成各种云图 、云参数、海面温度、植被指数、射出长波辐射、积雪、海冰、气溶胶、地面反照率等一系列产品,还可进行多种自然灾害和生态环境监测 。

红外分光计和微波辐射计:FY-3上的红外分光计和微波温度探测辐射计与NOAA卫星上的红外分光计HIRS和微波辐射计MSU在性能上很接近,主要用于探测大气温度和湿度廓线,还可以用以反演射出长波辐射、臭氧总含量、云量、云顶温度和高度、洋面温度、陆地表面温度、冰雪覆盖和降水率等。

臭氧和地球辐射收支探测器:FY -3 上的臭氧和地球辐射收支探测器与美国 NOAA 卫星等上的同类仪器在性能上基本相同。

微波成像仪:NOAA 卫星中没有装载微波成像仪 , 而美国国防气象卫星( DMSP) 1987 年起载有微波成像仪SSM/I,它在 19.35、37.0、85. 5GHz 具有双极化通道 ,在 22. 235GH z 具有垂直极化通道。FY-3 的微波成像仪的性能与 SSM/I 比较接近,都是采用圆锥扫描,地面分辨率略高于 SSM/I,主要区别是增加了10.65 和 150GHz 双极化通道(150GHz 为试验通道),因此增强了洋面风速、土壤湿度、洋面温度、降水等的探测能力。

中分辨率成像光谱仪:中分辨率成像光谱仪是新的一代气象和地球环境探测卫星中的一种主要遥感器,具有非常先进的技术,它在可见光、近红外、短波红外和热红外波段设几十个通道,光谱分辨率大大提高,具有云、地表、海表和大气多种参数的综合探测能力。典型仪器是美国 EOS 中装载的 MODIS,它具有 36 个通道。

环境系列卫星

环境系列卫星是中国专门用于环境和灾害监测的对地观测卫星系统。系统由2颗光学卫星(HJ-1A卫星和HJ-1B卫星)和一颗雷达卫星(HJ-1C卫星)组成的。拥有光学、红外、超光谱等不同探测方法,有大范围、全天候、全天时、动态的环境和灾害监测能力。

HJ-1A及HJ-1B卫星(光学卫星)

HJ-1A和HT-1B卫星是用于环境与灾害监测预报的,它们也搭载了CCD相机和超光谱成像仪(HSI)。

HT-1C卫星(雷达卫星)

HJ-1C卫星也是用于环境与灾害监测预报的,是中国首颗S波段合成孔径雷达卫星,会与已经发射的HJ-1A卫星、HJ-1B卫星形成的卫星系统。

A星任务:环境与灾害监测预报小卫星星座A星是一颗光学星,主要在可见光谱段范围内,采用多光谱和高光谱探测手段,形成对地物大范围观测和高光谱遥感的能力,为灾害和生态环境发展变化趋势预测提供信息,对灾情和环境质量进行快速和科学的评估提供信息。

B星任务:环境与灾害监测预报小卫星星座B星是一颗光学星,主要在可见光与红外谱段范围内,采用多光谱和红外光谱探测手段,形成对地物大范围观测的能力和地表温度探测能力,为灾害和生态环境发展变化趋势预测提供信息,对灾情和环境质量进行快速和科学的评估提供信息。

landsat 卫星

美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星 — ERTS ),从1972年7月23日以来, 已发射8颗(第6颗发射失败)。Landsat1—4均相继失效,Landsat 5于2013年6月退役。 Landsat 7于1999年4月15日发射升空。Landsat8于2013年2月11日发射升空,经过100天测试运行后开始获取影像。

陆地卫星的轨道设计为与太阳同步的近极地圆形轨道,以确保北半球中纬度地区获得中等太阳高度角(25°一30°)的上午成像,而且卫星以同一地方时、同一方向通过同一地点.保证遥感观测条件的基本一致,利于图像的对比。如Landsat 4、5轨道高度705km.轨道倾角98.2°,卫星由北向南运行,地球自西向东旋转,卫星每天绕地球14.5圈,每圈在赤道西移159km,每16天重复覆盖一次,穿过赤道的地方时为9点45分,覆盖地球范围N81°—S81.5°。

MSS传感器

TM传感器

ETM+传感器

OLI传感器

TIRS传感器

1.LandSat系列卫星介绍:

1.Landsat系列卫星概述:

美国NASA的陆地卫星(Landsat)计划从1972年7月23日以来,已发射8颗(第6颗发射失败)。目前Landsat1-4均相继失效,Landsat-5于2013年6月退役。Landsat-7于1999年4月15日发射 升空。Landsat-8于2013年2月11日发射升空,经过100天测试运行后开始获取影像。

2.Landsat-5介绍:

Landsat-5卫星是美国陆地卫星系列中的第五颗。Landsat-5卫星于1984年3月发射升空,它是一颗光学对地观测卫星,有效载荷为专题制图仪(TM)和多光谱成像仪(MSS)。Landsat-5卫星所获得的图像是迄今为止在全球应用最为广泛、成效最为显著的地球资源卫星遥感信息源,同时Landsat-5卫星也是目前在轨运行时间最长的光学遥感卫星。

3.Landsat-7介绍:

Landsat-7卫星于1999年4月15日发射,是美国陆地探测系列卫星。Landsat-7卫星装备有增强型专题制图仪(ETM+),ETM+有8个波段的感应器,覆盖着从红外到可见光的不同波长范围。与Landsat-5卫星的TM传感器相比,ETM+增加了15米分辨率的一个波段,在红外波段的分辨率更高,因此有更高的准确性。2003年5月31日起,Landsat-7的扫描仪校正器出现异常,只能采用SLC-off模型对数据进行校正。

4.Landsat-8介绍:

Landsat-8卫星于2013年2月11日发射,是美国陆地探测系列的后续卫星,Landsat-8卫星装备有陆地成像仪(简称OLI)和热红外传感器(简称TIRS)。OLI有9个波段的感应器,覆盖了从红外到可见光的不同波长范围。与Landsat-7卫星的ETM+传感器相比,OLI增加了一个蓝色波段(0.433-0.453μm)和一个短波红外波段(band9-0.136-1.390μm),蓝色波段主要用于海岸带观测,短波红外波段包括水汽强吸收特征,可用于云检测。

2. 气溶胶反演原理是什么

辐射传输法是地表温度反演的最基本方法,其最大优点在于它可以用于任何热红外遥感波段.这一方法虽然可行,实际应用起来比较困难,除计算过程复杂之外,大气模拟还需要精确的、实时的(卫星过天空时)大气剖面数据,包括不同高度的温度、气压、水燕汽质量分数、气溶胶质量分数、COZ质量分数、03质量分数...

3. 气溶胶现象

一般不会的。原因在于气容胶通常会相对静止状态。大都是在气容胶环境中才会容易受到污染。只能被污染者把污染物带入室内。

4. 气溶胶形成原理

气溶胶发生器的工作原理是在喷气口高速气流的作用下,菌液喷出口形成负压,把发生器里的菌液吸至喷嘴处,又被喷气口高速气流碎裂或分散成无数的气溶胶粒子,经喷雾口喷出。

液体气溶胶发生器有两个外接口,一个是连接气源的供气接口,另一个是注液和喷雾两用接口。

5. 气溶胶反演是用来干什么的

传统的气溶胶反演算法利用辐射传输模型(radiative transfer model, RTM)构建查找表,通过查找表匹配卫星观测值确定气溶胶光学厚度。查找表的建立需要大气模式、气溶胶类型等参数作为输入信息,这些参数需要根据早期观测确定或根据实测数据自定义,具有较大的难度和不确定性。

SARA没有构建查找表,而是直接利用RTM计算AOD。SARA反演AOD的原理基于3个假设:(1)地表为朗伯源;(2)只考虑单次散射;(3)单次散射反射率与非对称因子在反演区域不会随着位置的改变而改变。其中,前两条是算法成立的必要前提,第3条是为了确保研究区域的反演结果均具有较高精度

6. 气溶胶的源与汇

气溶胶是指在气态介质中分散悬浮的固体或液体颗粒物质。 原因气溶胶是由固体或液体颗粒物质组成的混合物,在大气中广泛存在,并且对环境污染、天气、气候等都有重要影响。在化学、物理、环境科学等领域,气溶胶的研究也非常重要。 气溶胶的来源非常广泛,包括自然源(如火山喷发

7. 气溶胶形成原因

气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~100μm,分散介质为气体。液体气溶胶通常称为雾,固体气溶胶通常称为雾烟。

8. 气溶胶解释

气溶胶是指在空气中悬浮的微小颗粒物,它们的大小一般在0.01微米到100微米之间。气溶胶在大气和室内环境中都存在,由于其微小体积、大表面积和高活性等特性,它们对人体健康、环境、气候等方面都具有重要影响。气溶胶的来源很广泛,包括自然源,如海盐颗粒、石英尘、植物花粉等,也包括人类活动产生的源,如汽车尾气、工业废气、烟草烟雾等。当前,气溶胶的浓度受到重视,并成为研究的热点之一,这对于制定环保政策和维护人类健康具有重要意义。

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map