返回首页

海洋中有几个气体供应(海洋中蕴藏着哪些能源)

来源:www.ascsdubai.com   时间:2023-04-26 11:17   点击:100  编辑:jing 手机版

1. 海洋中蕴藏着哪些能源

海洋能源有潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能等等。

海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。按储存形式又可分为机械能、热能和化学能。其中,潮汐能、海流能和波浪能为机械能,海水温差能为热能,海水盐差能为化学能。海洋能是一种具有巨大能量的可再生能源,而且清洁无污染,但地域性强,能量密度低。

2. 海洋中蕴藏着哪些自然资源

海底矿藏按所处的海水深度可分为两类:浅海矿藏、深海矿藏浅海矿藏是指蕴藏在大陆边缘浅海区内的矿藏,主要有天然气和石油、海滨砂矿、磷钙石、海绿石以及海底基岩中的煤、铁、铜、硫等。

浅海矿藏不仅种类多、品位高,而且容易开采,是当前开发最多的海洋矿产资源j深海矿藏主要有锰结核、石油和天然气、富钴锰结壳、金属软泥、热液多金属矿等。

3. 海洋中蕴藏的能量

海洋中氧平衡 海洋生态系统在全球碳循环中发挥着重要作用,能有效地缓解CO2浓度的增加。

海洋持有的碳比大气多50倍,其中大部分是以碳酸盐(CO22-)和碳酸氢盐(HCO-2)离子的形式存在。海洋吸收CO2的能力大致相当于通常所估计的矿物燃料的贮藏量。虽然海洋对大气CO2的缓解作用主要取决于海洋的混合程度和酸碱度,但海洋浮游植物的潜在作用不可忽视。在海洋表层,浮游植物通过光合作用将海水中溶解的无机碳转化为有机碳,水中CO2分压降低;在其初级生产过程中,还需从海水中吸收溶解的无机盐,如硝酸盐和磷酸盐,这使得表层水的碱度升高,也将降低水中的CO2分压。这两个过程造成空气――海洋交界面两侧的CO2分压差,促进大气CO2向海水的扩散。同时,由于向海底沉降的有机颗粒携带的营养盐分解成无机盐的速率非常缓慢,使得表面水的碳含量比深度超过1000米处海水中的碳含量低10%。海洋表层的这一生物动力学过程,也被称之为“生物学泵”。海洋生物光合作用形成的有机碳沉积到海底,它们分解返回大气速度很慢。这一点与陆地生物圈显然存在很大差异。因为陆地生物圈的碳汇比较容易释放出来,如大面积森林砍伐、土地利用等。估计海洋生物光合作用利用的总碳量约为3×1010-4×1010 t/a。这个值代表海洋光合作用的总碳汇,其对大气CO2的净汇还取决于有机碳分解的返回能量。

4. 海洋中蕴藏着丰富的能量资源

海洋中蕴藏着丰富的太阳热能。太阳每年供应给海洋的热能大约有60多功能万亿千瓦时,这样庞大的能量,除了一部分转变为海流的动能和水气的循环外,都直接以热能的形式储存在海水中, 主要表现为海水表层和深层直接的温差。通常情况下,海水表层的温度可达25-28℃ ,而海平面以下500米的深处水温大约只有4-7℃,两者相差20℃左右,热带海洋的温差更为明显. 在赤道地区,接近海面的表面海水温度在太阳照射下高达近30摄氏度,而水深数百米的深层海水温度是5~10度。海洋温差发电就是利用这一温差进行的。据佐贺大学海洋能源研究中心介绍,位于北纬40度——南纬40度的100个国家和地区都可以进行海洋温差发电. 火力发电和原子能发电是以热能使水沸腾,利用蒸汽带动涡轮机,然后发电。作为带动涡轮机的蒸汽。海洋温差发电是利用氨和水的混合液。与水的100度相比,氨水的沸点是33度,容易沸腾。 借助表面海水的热量,利用蒸发器使水沸腾,用氨蒸汽带动涡轮机。氨蒸汽会被深层海水冷却,重新变成液体。在这一往返过程中,可以依次将海水的温差变成电力。 海洋温差发电的原理是19世纪后半期由法国人想出来的。日本人上原从1973年开始进行研究。为了高效地将海水热量伟给氨,他开发了电容器板热交换装置,安装在凝结器和蒸发器上。结果,他确立了海洋温差发电中最高度的“上原循环”系统。 上原解释说:“由于燃料是海水,燃料费等于零。如果能够提高系统效率、降低成本,就可以投入实用。” 上原等研究人员将表面海水放入特殊的真空容器里,使它迅速蒸发,然后用深层海水进行冷却,成功地使之变成了淡水。据测算,印度1000千瓦的海洋温差发电设备一天可生产1.6万瓶淡水。 海洋温差发电的能源变换效率是3%~5%,比火力发电的40%低得多。但如果一台发电设备的输出功率达不到1万千瓦的规模,每千瓦小时的发电成本就难以控制在可与其他发电方式竞争的10日元以下。 然而,美国工程师设计的一个16万千瓦的海洋温差发电装置,全长450米,自重23.5万吨,排水量达30万吨。由于海洋能密度比较小,并且能源变换效率是3%~5%,很低.所以要得到比较大的功率,海洋能发电装置要造得很庞大。而且还要有众多的发电装置,排列成阵,形成面积广大的采能场,才能获得足够的电力。这是海洋能利用的共同特点。   由于海洋温差能开发利用的巨大潜力,海洋温差发电受到各国普遍重视。目前,日本、法国、比利时等国已经建成了一些海洋温差能电站,功率从100千瓦至5000干瓦不等。上万干瓦的温差电站也在建设之中。 参考文献:大连少年儿童图书馆

5. 海洋中蕴藏着哪些能源呢

海洋资源是包括海洋生物、海底矿产、海水、海洋能源、港口等多种类型的综合性资源。海洋生物资源也是生物资源的组成部分。

6. 海洋中蕴藏的资源主要有

海洋是生命的摇蓝。从第一个有生命力细胞诞生至今,仍有20多万种生物生活在海洋中,其中海洋植物约10万种,海洋动物约16万种。从低等植物到高等植物,植食动物到肉食动物,加上海洋微生物,构成了一个特殊的海洋生态系统,蕴藏着巨大的生物资源。据估计,全球海洋浮游生物的年生产量(鲜重)为5000 亿吨,在不破坏生态平衡的情况下,每年可向人类提供300亿人食用的水产品,这是一座极其诱人的人类未来食品库! 海洋生物资源有其自身的特点:它是有生命的,能自行增殖,并不断更新的资源,但从另一方面说,它因为是通过活的动植物体来繁殖发育,使资源以更新和补充,具有一定的自发调节能力,是一个动态的平衡过程。

但是一旦其生态系统平衡遭到破坏,就意味着海洋生物资源的破坏。

藻类在海洋生物资源中占有特殊的重要地位。

它能够自力更生的进行光合作用,产生大量的有机物质,为海洋动物提供充足的食物。

同时,它在光合作用中还释放大量的氧气,总产量可达360亿吨(占地球大气含氧量的70%),为海洋动物甚至陆上生物提供必不可少的氧气。

7. 海洋能蕴含哪些能量

海洋中有丰富的资源。在当今全球粮食、资源、能源供应紧张与人口迅速增长的矛盾日益突出的情况下,开发利用海洋中丰富的资源,已是历史发展的必然趋势。目前,人类开发利用的海洋资源,主要有海洋化学资源、海洋生物资源、海底矿产资源和海洋能源四类。

海水可以直接作为工业冷却水源,也是取之不尽的淡化水源。发展海水淡化技术,向海洋要淡水,是解决世界淡水不足问题的重要途径之一。

海水中已发现的化学元素有80多种。目前,海洋化学资源开发达到工业规模的有食盐、镁、溴、淡水等。随着科学技术的发展,丰富的海洋化学资源,将广泛地造福于人类。

海洋中有20多万种生物,其中动物18万种,包括16000多种鱼类。在远古时代,人类就已开始捕捞和采集海产品。现在,人类的海洋捕捞活动已从近海扩展到世界各个海域。渔具、渔船、探鱼技术的改进,大大提高了人类的海洋捕捞能力。海洋中由鱼、虾、贝、藻等组成的海洋生物资源,除了直接捕捞供食用和药用外,通过养殖、增殖等途径还可实现可持续利用。

在大陆架浅海海底,埋藏着丰富的石油、天然气以及煤、硫、磷等矿产资源。在近岸带的滨海砂矿中,富集着砂、贝壳等建筑材料和金属矿产。在多数海盆中,广泛分布着深海锰结核,它们是未来可利用的潜力最大的金属矿产资源(图3.14《深海锰结核》)。

海水运动中蕴藏着巨大的能量,它们属于可再生能源,而且没有污染。但是,这些能量密度很小,要开发利用它们,必须采用特殊的能量转换装置。现在,具有商业开发价值的是潮汐发电和波浪发电,但是工程投资较大,效益也不高。

海洋渔业生产

海洋渔业资源主要集中在沿海大陆架海域,也就是从海岸延伸到水下大约200米深的大陆海底部分。这里阳光集中,生物光合作用强,入海河流带来丰富的营养盐类,因而浮游生物繁盛(图3.15《大陆架剖面示意》)。这些浮游生物是鱼类的饵料,它们在海洋中分布很不均匀,一般在温带海区比较多。

温带地区季节变化显著,冬季表层海水和底部海水发生交换时,上泛的底部海水含有丰富的营养盐类,这些营养盐类来自海洋中腐烂的生物遗体。暖流和寒流交汇处或有冷海水上泛的地方,饵料比较丰富。这些地方通常是渔场所在地(图3.16《世界主要渔业地区的分布》)。因此,尽管大陆架水域只占海洋总面积的7.5%,渔获量却占世界海洋总渔获量的90%以上。

世界主要渔业国都分布在温带地区,这些温带国家鱼产品消费量高,市场需求大。中国和日本是世界海洋渔获量较多的国家。中国在充分利用近海渔场(图3.17《舟山渔场的沈家门渔港》)和浅海滩涂大力发展海洋捕捞和海水增养殖业的同时,远洋捕捞也获得了较大的发展。日本可耕地有限,人口密度高,因此海洋水产品在食品结构中比重较大。

8. 海洋中蕴藏着哪些资源?

1、海洋矿物资源。海洋矿产资源,又名海底矿产资源,是海滨、浅海、深海、大洋盆地和洋中脊底部的各类矿产资源的总称。主要有石油、煤、铁、铝钒土、锰、铜、石英岩等。

2、海水化学资源。主要有氯、钠、镁、硫、碘、铀、金、镍等,它们溶解在海水中,其性质同海洋矿物资源一样,都是矿物资源(区别于生物资源)

3、海洋生物资源。又称海洋水产资源,指海洋中蕴藏的经济动物和植物的群体数量,是有生命、能自行增殖和不断更新的海洋资源。其特点是通过生物个体种和种下群的繁殖、发育、生长和新老替代,使资源不断更新,种群不断补充,并通过一定的自我调节能力达到数量相对稳定。

4、海洋动力资源。主要指海水运动过程中产生的潮汐能、波浪能、海流能及海水因温差和盐度差而引起的温差能与盐差能等。其特点为:①蕴藏量大,可再生。②能流分布不均、密度低。③能量多变,不稳定。

9. 海洋蕴含的能源有哪些

海洋能源有哪些种类?

1.潮汐能

所谓潮汐能,就是因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量。

潮汐能可以像水能和风能一样用来推动水磨、水车等,也可以用来发电。当前,潮汐能的主要功能就是发电。

世界最大的潮汐能源系统

利用潮汐能发电,首先要做的就是在海湾或河口建筑拦潮大坝。形成水库,在坝中修建机房,安装水轮发电机,利用水位差使海水带动水轮机发电。建成潮汐发电站后还有利于海产养殖业的发展。

世界上,潮汐能主要多分布在潮差较大的喇叭形海湾和河口地区,如加拿大的芬迪湾、巴西的亚马逊河口、南亚的恒河口和中国的钱塘江口等都蕴藏着大量的潮汐能。

我国海岸线的长度为1.8万公里,潮汐能资源十分丰富。在潮汐能资源的开发利用上,目前我国沿海地区已经修建了一些中小型潮汐发电站。在温岭江厦港,就有一座我国规模最大的潮汐发电站——江厦潮汐发电站,它还是世界第三、亚洲第一大潮汐发电站。潮汐发电站受潮水涨落的影响,具有很大的不稳定性,海水对水轮机及其金属构件的腐蚀及水库泥沙淤积问题都较严重。这些问题都是急需解决的,只有将这些做好,就能更好地利用潮汐能来发电。

2.波浪能

波浪能集有许多优点,比如能量密度高、分布面广泛。特别是在能源消耗多的冬季,可以利用的波浪能能量也最大。它的能量如此巨大,一直都吸引着沿海的能工巧匠们。他们想尽各种办法,期望能够驾驭海浪开辟新天地。

波浪能发电

波浪能电站

具体而言,波浪能就是指海洋表面波浪所具有的动能和势能。海洋表面的海水受太阳辐射给予的热量,可以说它是世界最大的太阳能收集器。温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在辽阔的海洋表面上,风能以自然储存于水中的方式进行能量转移,因此,说波浪能是太阳能的另一种浓缩形态,并不是没有道理的。

在所有海洋能源中,波浪能是最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它事实上是吸收了风能而形成的,它的能量传递速率与风速有一定关系,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能,从而使波浪能发挥出作用。

在风较多的沿海地带,波浪能的密度通常都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着十分有利的波候。而我国的浙江、福建、广东和台湾沿海的波能也较为丰富,在工业经济发展上功不可没。

波浪能之所以能够发电是通过波浪能装置,将波浪能首先转换为机械能,再最终转换成电能。这一技术源自于20世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验,但受客观条件和技术影响,所取得的效果效益有好有差。

3.海流能

简而言之,海流所存储的动能就是海流能。海流能的能量与流速的平方和流量成正比。与波浪能相比,海流能的变化要平稳且有规律得多。海流能有着很大的开发价值。

海流能的利用方式主要是发电。1973年,美国研制出一种名为“科里奥利斯”的巨型海流发电装置。该装置为管道式水轮发电机。机组长l10米,管道口直径170米,安装在海面下30米处。在海流流速为2.3米/秒条件下,该装置获得8.3万千瓦的功率。此外,日本、加拿大也在大力研究试验海流发电技术。到目前为止,我国的海流发电研究也已经有样机进入中间试验阶段,发展前景不可限量。

相比陆地上的江河,利用海流发电要方便得多,它既不受洪水的威胁,又不受干旱的影响,几乎以常年不变的水量和一定的流速流动,为人类提供了可靠的能源。

利用海流发电,除了上面所说的类似江河电站管道导流的水轮机外,还有类似风车桨叶或风速计那样机械原理的装置。一种海流发电站,有许多转轮成串地安装在两个固定的浮体之间,在海流冲击下呈半环状张开,看上去很像花环,因此被称为花环式海流发电站,它是目前海流发电站的主要形式。

4.海洋温差能

海洋是一个巨大的吸热体,仔细观察不难发现,地球上的海洋除了南北的极地和部分浅海外,通常不会结冰,尤其是赤道附近的海域,海水表面温度几乎是恒温的,因此在描述海洋时人们都说它是温暖的。海洋深处的海水温度却很低,它一年四季温度只有摄氏几度,无论如何,太阳也没有办法把它晒热,这与海洋上层的温水比较,大约有20℃的温差。在热力学上,凡有温度差异都可用来作功,这就是我们所要讲的海洋温差能。

大多数情况下,海洋温差是指南纬25°至北纬32°之间海域中海水深层与表层的温度差。我国位于东半球,拥有较好的海洋温差条件,尤其是台湾附近海水温差更大,能够使人们得以很好地利用。

海洋温差能的主要功能就是利用温差发电。海洋温差发电主要采用两种循环系统,一种是开式,一种是闭式。在开式循环中,表层温海水在闪蒸蒸发器中,由于闪蒸而产生蒸汽,蒸汽进入汽轮机做功后流入凝汽器,由来自海洋深层的冷海水将其冷却。在闭式循环中,来自海洋表层的温海水先在热交换器内将热量传给丙烷、氨等低沸点工质,使之蒸发,产生的蒸汽推动汽轮机做功后再由冷海水冷却。在这个循环的过程中,可以不断地将海水的温差变成电力,由此使发电成为实现。

4.海洋盐差能

所谓盐差能,就是指海水与淡水之间或两种含盐浓度不同的海水之间的化学电位差能。这种能量主要存在于河流与海洋的交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能源中密度最大的一种可再生能源。海洋盐差能可以用来发电在很久以前已被人们认识到。

其发电原理主要是:当把两种浓度不同的盐溶液盛在一个容器中时,浓溶液中的盐类离子就会自发地向稀溶中扩散,一直到两者浓度达到一致。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。有学者在经过详细的计算后发现在17℃时,如果有1摩尔盐类从浓溶液中扩散到稀溶液中去,就会释放出5500焦的能量来。由此专家设想到:只要有大量浓度不同的溶液可供混合,就一定会有巨大的能量释放出来。经过进一步计算还发现,如果利用海洋盐分的浓度差来发电,它的能量可排在海洋波浪发电能量之后,但又要大于海洋中的潮汐能和海流能。

利用盐差能发电有多种方式,比如有渗透压式、蒸汽压式和机械一化学式等,其中渗透压式方案获得了人们最大的重视。将一层半渗透膜放在不同盐度的两种海水之间,通过这个膜会产生一个压力梯度,迫使水从盐度低的一侧渗透到盐度高的一侧,从而稀释高盐度的水,直到膜两侧水的盐度变成一致。此压力称为渗透压,它与海水的盐浓度及温度有着很大的关联。

据估算,地球上存在的可利用的盐差能达26亿千瓦,其能量甚至比温差能还要大。由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新型的能源,海洋能源已吸引了全世界越来越多人的兴趣。

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map