返回首页

海洋环境侵蚀(海洋大气腐蚀)

来源:www.ascsdubai.com   时间:2023-02-09 22:04   点击:72  编辑:jing 手机版

1. 海洋大气腐蚀

海水是一种含有多种盐类的电解质溶液,以3~3.5%的氯化钠为主盐,pH值为8左右,并溶有一量的氧气。除了电位很负的镁及其合金外,大部分金属材料在海水中都氧去极化腐蚀。其主要特点是海水中氯离子含量很大,因此大多数金属在海水中阳极极化阻滞很小,腐蚀速度相当高;海浪、飞溅,流速等这些利于供氧的环境条件,都会促进氧的阴极去极化反应,促进金属的腐蚀。海水导电率很大,所以不仅腐蚀微电池活性大,宏电池的活也很大。海水中不同金属相接触时,很容易发生电偶腐蚀。即使两种金属相距数十米,只要存在电位差,并实现电联结,就可能发生电偶腐蚀。

对于处于海水环境中的桥梁结构来说,除了大气部位受海洋性大气腐蚀影响之外,可以把桥梁如同海洋工程一样分为飞溅区、潮差区、全浸区和海泥区。

(1)飞溅区

指平均高潮线以上海洋飞溅所能湿润的位置。在这个部位,金属材料表面连续不断地被海水湿润,海水又与空气充分接触,含氧量充分,含盐量很高,加上海水的冲击作用,腐蚀在这个部位最为严重。当很高的风速和海流速造成强烈的海水运动时,海水的冲击会在飞溅区成磨耗-腐蚀联合作用的破坏。同时强烈的海水冲击不断地破坏腐蚀产物和保护涂层,增加了飞溅区的腐蚀。

不同海区飞溅区的腐蚀主要于风浪和温度。飞溅区金属表面温度更接近于气温。风浪大的热带海域钢铁在飞溅区的腐蚀最为严重。

(2)潮差区

指平均高潮位与平均低潮位之间的区段,金属表面与含氧充分的海水周期性地接触,引起腐蚀。与飞溅区相比,潮汐区的氧扩散没有飞溅区那样快,也无强烈的海水冲击。潮汐区金属表面温度受气温影响也受海水温度的影响,通常接近于表层海水温度。

潮差区有海生物栖居,而飞溅区没有。

潮差区的腐蚀通常是平均高潮位和平均低潮位最为严重,这是氧浓差电池的作用。潮差段因供氧充分,成为阴极,受到一定程度的保护,腐蚀减轻。低潮位以下全浸区因供氧相对较少成为阳极,使腐蚀加速。在工程设计上,有时把潮差区并入飞溅区一起考虑,并不是因为两段间的腐蚀是一样的,而是从施工、维护和阴极保护方面加综合考虑,使之协调一致。

(3)全浸区

平均低潮线以下的位置为海水全浸区。根据海洋的深度不同,又分为浅海区和深海区,二者并无确切的深度界限,一般所说的浅海区大多指100~200m以内的海水。

海洋环境因素如温度、含氧量、盐度、pH值等随海洋的深度而变化,所以海水深度必然影响到全浸区金属的腐蚀行为。其中是最为主要的因素是温度和含氧量。全浸区中钢铁的腐蚀速度在0.07~0.18mm/a。

浅海区海水氧处于饱和态,温度高,海水流速大腐蚀比深海区大,海洋生物会粘附在金属材料上。一般来说,20m水深以内的海水较深层海水具有更强的腐蚀性。深海区的含氧量较小,温度接近0℃,海洋生物的活性减小。

(4)海泥区

主要由海底沉积物构成,含盐度高,电阻率低,因此是良好的电解质,对金属的腐蚀要比陆地上土壤要高。由于氧浓度十分低,所以海泥区的腐蚀比全浸区要低。

海洋中存生在着多种动植物和微生物,它们的生命活动会改变金属-海水界面的状态和介质性质,对腐蚀产生不可忽视的影响。海生物的附着会引起附着层内外的氧浓差电池腐蚀。某些海生物的生长会破坏金属表面的涂料等保护层。在波浪和水流的作用下,可能引起涂层的剥落。在附着生物死后粘附的金属表面上,锈层以下以及海泥里,都是缺氧环境,会促进厌氧的硫酸盐还原菌的繁殖,引起严重的微生物腐蚀,使钢铁的腐蚀增大,其典型特征是外貌呈沾污的黑色糊。一些研究结果表明,在SRB大量繁殖的海泥中,钢铁的腐蚀速度要比无菌海泥中高出数倍到10多倍,甚至还要高出海水中2~3倍。

如同潮差区和全浸区一样,在全浸区和海泥区之间也会因为氧的浓度不一样而造成浓差电池。泥线以下因为相对缺氧而成为阳极,加重腐蚀。

2. 海洋环境强腐蚀性

这个要看腐蚀物是什么。如果是浓硝酸,那么低碳钢更加耐腐蚀。不过绝大多数情况下是铜及其合金的耐腐蚀性好。尤其是铍铜合金。

耐大气腐蚀性和储藏寿命在电子或电气设备生产、储存和使用的环境中,铍铜合金的耐腐蚀性优于大多数铜合金。

由于电子元件长期储存后都要进行焊接, 耐锈蚀性就显得十分关键。苯并三唑(BTA)的表面抑制作用有助于减少氧化物的形成并延长储藏寿命。

为达到最佳焊接性, 储存前, 铍铜合金可以用锡包覆。海洋环境由于其低腐蚀速度和固有的抗生物污染性, 铍铜合金能很好地应用于淡水和咸水环境。低速运转的情况下,铍铜合金在海水中腐蚀速度很慢,与铜镍合金相当。高速运转将加快铍铜合金和大多数铜合金的腐蚀。海底通信光缆外套已在海底使用了30多年,而没有污染和有害腐蚀的迹象。这些外套就是铍铜合金制成的, 因为其具有良好的强度、机械加工性、耐腐蚀性和抗污染性。

3. 海洋大气腐蚀与防护的新技术

金属锌、铝具有很大的耐大气腐蚀的特性。在钢铁构件上喷锌或喷铝,锌、铝是负电位和钢铁形成牺牲阳极保护作用从而使钢铁基本得到了保护。目前用喷铝涂层来防止工业大气、海洋大气的腐蚀,其特点如下: (1)喷铝涂层与钢铁基体结合力牢固、涂层寿命长,长期经济效益好; (2)工艺灵活,适用于重要的大型及难维修的钢铁结构的长效防护,可现场施工; (3)喷锌或喷铝涂层加防腐涂料封闭,可大大延长涂层的使用寿命,从理论和实际应用的效果来看,喷锌或喷铝的涂层是防腐涂料的最好底层。金属喷涂层与防腐涂料涂层的复合涂层的防护寿命较金属喷涂层和防腐涂料防护层二者寿命之和还要长,为单一涂料防护层寿命的数倍。 重防腐长效涂料由底漆、中间漆和面漆构成。 从长效经济性考虑,喷铝涂层最为经济,但一次性投入大,施工良好的涂层可在10年内无需维修。环氧富锌底漆+环氧云铁中间漆及丙烯酸聚氨酯长效防护系统具有较佳的经济性。

4. 海洋大气腐蚀的内容

材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。

按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。

均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。

局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。

选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。

按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等

5. 海洋大气腐蚀环境

海水是一种含有多种盐类的电解质溶液,以3~3.5%的氯化钠为主盐,pH值为8左右,并溶有一量的氧气。除了电位很负的镁及其合金外,大部分金属材料在海水中都氧去极化腐蚀。其主要特点是海水中氯离子含量很大,因此大多数金属在海水中阳极极化阻滞很小,腐蚀速度相当高;海浪、飞溅,流速等这些利于供氧的环境条件,都会促进氧的阴极去极化反应,促进金属的腐蚀。海水导电率很大,所以不仅腐蚀微电池活性大,宏电池的活也很大。海水中不同金属相接触时,很容易发生电偶腐蚀。即使两种金属相距数十米,只要存在电位差,并实现电联结,就可能发生电偶腐蚀。

对于处于海水环境中的桥梁结构来说,除了大气部位受海洋性大气腐蚀影响之外,可以把桥梁如同海洋工程一样分为飞溅区、潮差区、全浸区和海泥区。

(1)飞溅区

指平均高潮线以上海洋飞溅所能湿润的位置。在这个部位,金属材料表面连续不断地被海水湿润,海水又与空气充分接触,含氧量充分,含盐量很高,加上海水的冲击作用,腐蚀在这个部位最为严重。当很高的风速和海流速造成强烈的海水运动时,海水的冲击会在飞溅区成磨耗-腐蚀联合作用的破坏。同时强烈的海水冲击不断地破坏腐蚀产物和保护涂层,增加了飞溅区的腐蚀。

不同海区飞溅区的腐蚀主要于风浪和温度。飞溅区金属表面温度更接近于气温。风浪大的热带海域钢铁在飞溅区的腐蚀最为严重。

(2)潮差区

指平均高潮位与平均低潮位之间的区段,金属表面与含氧充分的海水周期性地接触,引起腐蚀。与飞溅区相比,潮汐区的氧扩散没有飞溅区那样快,也无强烈的海水冲击。潮汐区金属表面温度受气温影响也受海水温度的影响,通常接近于表层海水温度。

潮差区有海生物栖居,而飞溅区没有。

潮差区的腐蚀通常是平均高潮位和平均低潮位最为严重,这是氧浓差电池的作用。潮差段因供氧充分,成为阴极,受到一定程度的保护,腐蚀减轻。低潮位以下全浸区因供氧相对较少成为阳极,使腐蚀加速。在工程设计上,有时把潮差区并入飞溅区一起考虑,并不是因为两段间的腐蚀是一样的,而是从施工、维护和阴极保护方面加综合考虑,使之协调一致。

(3)全浸区

平均低潮线以下的位置为海水全浸区。根据海洋的深度不同,又分为浅海区和深海区,二者并无确切的深度界限,一般所说的浅海区大多指100~200m以内的海水。

海洋环境因素如温度、含氧量、盐度、pH值等随海洋的深度而变化,所以海水深度必然影响到全浸区金属的腐蚀行为。其中是最为主要的因素是温度和含氧量。全浸区中钢铁的腐蚀速度在0.07~0.18mm/a。

浅海区海水氧处于饱和态,温度高,海水流速大腐蚀比深海区大,海洋生物会粘附在金属材料上。一般来说,20m水深以内的海水较深层海水具有更强的腐蚀性。深海区的含氧量较小,温度接近0℃,海洋生物的活性减小。

(4)海泥区

主要由海底沉积物构成,含盐度高,电阻率低,因此是良好的电解质,对金属的腐蚀要比陆地上土壤要高。由于氧浓度十分低,所以海泥区的腐蚀比全浸区要低。

海洋中存生在着多种动植物和微生物,它们的生命活动会改变金属-海水界面的状态和介质性质,对腐蚀产生不可忽视的影响。海生物的附着会引起附着层内外的氧浓差电池腐蚀。某些海生物的生长会破坏金属表面的涂料等保护层。在波浪和水流的作用下,可能引起涂层的剥落。在附着生物死后粘附的金属表面上,锈层以下以及海泥里,都是缺氧环境,会促进厌氧的硫酸盐还原菌的繁殖,引起严重的微生物腐蚀,使钢铁的腐蚀增大,其典型特征是外貌呈沾污的黑色糊。一些研究结果表明,在SRB大量繁殖的海泥中,钢铁的腐蚀速度要比无菌海泥中高出数倍到10多倍,甚至还要高出海水中2~3倍。

如同潮差区和全浸区一样,在全浸区和海泥区之间也会因为氧的浓度不一样而造成浓差电池。泥线以下因为相对缺氧而成为阳极,加重腐蚀。

6. 海洋大气腐蚀等级

煤炭中硫的含量. 硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。

煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。所以,“硫分”含量是评价煤质的重要指标之一。4.2无烟煤和烟煤的硫分分级 无烟煤和烟煤的硫分在基准发热量时按表2分级。表2 无烟煤和烟煤的硫分分级 序号 级别名称 代号 干燥基全硫分(St,d)范围/% 1 特低硫煤 SLS <0.50 2 低硫煤 LS 0.50~0.90 3 中硫煤 MS 0.91~1.50 4 中高硫煤 MHS 1.51~3.00 5 高硫煤 HS >3.00 表2 无烟煤和烟煤的硫分分级 序号 级别名称 代号 干燥基全硫分(St,d)范围/% 1 特低硫煤 SLS <0.50 2 低硫煤 LS 0.50~0.90 3 中硫煤 MS 0.91~1.50 4 中高硫煤 MHS 1.51~3.00 5 高硫煤 HS >3.00 4.3褐煤的硫分分级 褐煤的硫分在基准发热量时按表3进行分级。表3 褐煤的硫分分级 序号 级别名称 代号 干燥基全硫分(St,d)范围/% 1 特低硫煤 SLS <0.45 2 低硫煤 LS 0.45~0.85 3 中硫煤 MS 0.86~1.50 4 中高硫煤 MHS 1.51~3.00 5 高硫煤 HS >3.00

7. 海洋环境腐蚀

海水侵蚀、海沙掩埋、海风侵扰等碱性气氛中的钢铁使用环境,这种情况一般是用耐候钢和海上钢结构专用钢材,我国已经圆满解决了这个难题,以舞阳钢铁公司为代表的一批企业可以生产这样的钢材。

8. 海洋大气腐蚀性强吗

长期泡在水里是被水浸泡着,没有机会接触氧气,所以不会被氧化,反正那些时而被水泡着的又时而漏出水面接受风吹雨打的,容易被腐蚀。

氧气的浓度最大所以生成铁锈最多,可能是因为水位停留在那个位置的时间最长.

海洋环境按照腐蚀性划分为大气区、浪花飞溅区、潮差区、全浸区、海泥区。不同区域的腐蚀速率存在着明显差别。浪花飞溅区的腐蚀速率最高,潮差区次之。

9. 海洋大气腐蚀分类

众所周知,海洋大气腐蚀是材料与它所处的海洋大气环境之间,通过化学或电化学作用而引起的破坏,它涉及气、液、固三相及其相界面,是一个非常复杂的过程。据统计,世界各国每年因大气腐蚀造成的直接经济损失约占国民生产总值的1.5%~3%。此外,大气腐蚀本身以及由大气腐蚀引发的事故还会污染人类生存环境。由此可见大气腐蚀破坏的严重性。海洋大气环境由于具有高湿、高盐雾、高日照辐射强度等特点,导致金属材料在这种环境中的腐蚀破坏非常严重。

2

光照辐射对金属海洋大气腐蚀过程的影响主要是通过具有半导体性质腐蚀产物的光电化学效应来进行的。从原理上讲,当具有半导体性质的腐蚀产物在受到能量高于其禁带宽度的光照辐射后,价带中的电子将被激发到导带上产生光生电子和空穴对,这些光生电子和空穴会直接参与并影响基底金属的海洋大气腐蚀过程,从而导致暴露在海洋大气环境下的金属材料的腐蚀过程变得非常复杂,也出现了很多无法用现有的腐蚀理论来解释的异常海洋大气腐蚀现象,特别是在南海海域出现的异常严重的金属材料海洋大气腐蚀问题

10. 海洋大气腐蚀机理

腐蚀的分类方法有很多,按材料腐蚀原理的不同,可分为化学腐蚀和电化学腐蚀。化学腐蚀是金属在干燥的气体介质中或在不导电的液体介质中(如酒精、

顶一下
(0)
0%
踩一下
(0)
0%
Baidu
map