江南官网app 为船舶与海洋工程行业提供技术支持与动力,是船舶行业最大门户分类网站
全国: | 上海:
水上物流产品分类
主页 > 电气自动 > 船舶T型材(船舶T型材圆弧大小)
船舶T型材(船舶T型材圆弧大小)
来源:www.ascsdubai.com    时间:2022-12-02 11:40    点击:178   编辑:admin

1. 船舶T型材

钢材预处理、船体零件加工、部件装配焊接、分段装配焊接、船台装配焊接、对船体进行密闭性试验、船舶下水、码头安装(设备和系统的安装)、系泊试验和航行试验、交付订货方使用。

部件装配焊接:又称小合拢。将加工后的钢板或型钢组合成板列、T 型材、肋骨框架或船首尾柱等部件的过程,均在车间内装焊平台上进行。

2. 船舶T型材圆弧大小

 航空器或船舶夜航时,用以表示自身位置和运动方向,便于互相避让、识别的信号灯。  一般规定:飞机左翼尖装红灯,右翼尖装绿灯,尾翼端装白灯;直升机机身左侧装红灯,右侧装绿灯,尾端装白灯,在旋翼尖装红灯。船舶左舷装红灯,右舷装绿灯,桅杆和船尾装白灯;非机动船只装舷灯;木帆船只装一盏白灯。   飞机的外部灯光都有着不同的作用和特殊含义,在使用中也有一定的程序和要求。由于飞机机型、厂商的不同,飞机的灯光系统也是不尽相同的,但是基本上大致规则是一致的。常见的标准外部灯光系统有:  1、红色防撞灯又叫做信标灯,EACON LIGHT或BEACON,分别安装在飞机的上下中部,各一支。用途是防止航空器相撞。此灯根据机型适配的控制器不同,以一定的频率爆破闪烁。   此灯在飞机推出及发动机运行时打开!(只要飞机动就必开)   2、机翼灯又叫WING LIGHT,位于机翼每侧的两个单光束灯光,照明机翼前缘及发动机进气口。用于检查结冰情况。   此灯在有结冰可能时应打开,但实际应用中一般常开   3、航行及标志灯航行灯NAVIAGATION LIGHT,标志灯LOGO LIGHT,波音飞机飞为两个电门,空客飞机合在一起。航行灯分别为左红、右绿、尾椎白分别安装在机翼尖和尾追上。用于判明飞行物是飞机及指示飞行方向。标志灯分别安装在两侧的水平安定面翼尖上,提供垂直安定面上的航空公司标志进行照明。   空客飞机位两组航行灯,它的LOGO灯当主起落架减震支柱被压缩或襟翼伸出15度以上时标志灯亮。   航行灯为只要飞机上有人就必须打开   4、机头灯(空客飞机)NOSE,此灯安装在前起落架上,两个灯分别叫做起飞灯和滑行灯。放在T.O位置时起飞灯和滑行灯都亮,放在TAXI时只有滑行灯亮。此灯用于滑行道及跑道的前照明,飞机滑行时放在TAXI位,进跑道后放在T.O位置。飞机起飞后关闭。前起落架收起时,自动关闭。   *、滑行灯(波音飞机)TAXI LIGHT,此灯安装在前起落架减震支柱上。1个。地面滑行时,用来照明飞机前方。   飞机在滑行时打开,离地后立即关闭   5、着陆灯LANDING LIGHT,此灯安装在两侧机翼翼根,左右各两只。用于起飞着陆时照亮跑道。此灯功率很大,使用时产热很高,因此需要高速气流进行冷却。因此在地面起飞前才能打开。   飞机起飞滑跑前打开,离地后关闭   飞机最后进近阶段打开,落地后即关闭   6、跑道脱离灯又叫转弯灯或跑道边灯。波音RUNWAY TAKEOFF LIGHT,空客RUNWAY TURN。安装在前起落架减震支柱上,左右各一,分别提供机头前方两侧照明。用于照明滑行道、跑道边线。起飞后关闭。前起落架收起时自动关闭。   启动发动机后打开,另外用途为夜间示意地勤人员准备滑出   7、高亮度白色频闪灯又叫做高亮度白色防撞灯,STROBE LIGHT。此灯安装在翼稍前后各一及尾椎一只,波音飞机安装在左右翼稍后尖各一只,尾椎一只共3只,空客飞机安装在左右机翼前后翼尖及尾椎,共5只。用途是防止航空器相撞。此灯根据机型适配的控制器不同,以一定的频率爆破闪烁,亮度很高。   注意在得到进跑道许可后才可以打开此灯!FL100以上可以关闭此灯。落地脱离跑道前要关闭此灯!!   正常飞机外部灯光使用的顺序应该是   1、 飞机打开总电源开关后,由航前机务打开——航行灯,根据需要打开机翼灯、LOGO灯;   2、 飞机推出时打开红色防撞灯;(地面试车也要打开)   3、 飞机启动发动机后,打开转弯灯准备滑出;   4、 得到滑出许可后,打开滑行灯开始滑行;   5、 进入跑道后,白色防撞灯;   6、 得到起飞许可后打开着陆灯起飞;   7、 离地后,关闭滑行灯、转弯灯;(收起落架后可以自动关闭)   8、 高度上升至10000英尺以上关闭白色闪光灯;   9、 巡航时至少应该保持红色闪光灯、航行灯常开; 根据需要打开LOGO灯和机翼灯;   10、飞机下降至10000英尺以下打开白色闪光灯;   11、飞机放起落架后打开滑行灯;   12、最后进近阶段打开着陆灯;   13、接地后,打开转弯灯,关闭着陆灯、关闭白色闪光灯;   14、滑行到位后关闭滑行灯、红色闪光灯;   15、飞机如果不再有航班任务停机过夜,由航后机务最后关闭航行灯后,关闭飞机总电源离机!  船的航行灯用于显示船舶航行或停泊状态的,可表示夜间本船的航行方向和本船的大小。一切航行于海洋、江河、湖泊的船舶必须严格按照我国《海轮信号设备规范》和《中华人民共和国避碰规则》(1991)(交通部令[1991]30号发布交海发[2003]357号修改)所规定的数量和类型设备各种航行灯。  航行灯包括:桅灯、舷灯、尾灯、船首灯、环照灯、闪光灯及桅顶灯等。其中布置的要求如下:  桅顶:安置在船舶的桅杆上方或者首尾中心线上方的号灯,在225度的水平弧内显示不间断的灯光,其装置要使灯光从船舶的正前方到每一舷正横后22.5度内显示。  舷灯:安置在船舶最高甲板左右两侧的左舷的红光灯和右舷的绿光灯,各自在112.5度的水平弧内显示不间断的灯光,其装置要使灯光从船舶的正前方到各自一舷的正横后22.5度内分别显示。舷灯遮板向灯面,应当涂以无光黑漆。遮板的高度至少等于灯高。船舶长度为80米以上的驳船,应当在船首、尾部分别设置红、绿光舷灯。  尾灯:安置在船尾正中的白光灯。在135度的水平弧内显示不间断的灯光,其装置要使灯光从船舶的正后方到每一舷67.5度内显示。桅灯的高度应当尽可能与舷灯保持水平,但不得高出舷灯。  船首灯:是指安置在被顶推驳船首的一盏白光灯,在180度的水平弧内显示不间断的灯光,其装置要使灯光从船舶的正前方到每一舷90度内显示,但不得高于舷灯。  环照灯:360度的水平弧内显示不间断灯光的号灯。  红绿闪光灯:是安装在舷灯上方左红、右绿的闪光环照灯,其频率为每分钟50至70闪次。船舶长度小于12米的机动船也可以用红绿光水电筒代替红、绿闪光灯,但应当保持灯光明亮,颜色清晰分明。  黄闪灯光:安置在快速船桅杆上的黄闪光环照灯,其频率为每分钟50至70闪次。  红绿光并合灯:安装在桅灯的位置,分别从船舶的正前方到左舷正横后22.5度内显示红光,到右舷正横后22.5度内显示绿光,从船舶的正后方到每弦67.5度内显示白光的并合灯。  桅顶灯:也称“锚灯”。白光,装于桅杆顶端。水平照射角度360度,环照。  有关号灯的各条规定从日落到日出期间都应当遵守。在白天能见度不良的情况下也可以显示有关号灯。在显示号灯的时间内,凡是可能与规定号灯相混淆或者减弱其显示性能的灯光,均不得显示。号灯应当显示在最易见处,并符合内河避碰规则的技术要求,除内河避碰另有规定外,几个号灯,号型组成一组时,均应当垂直显示。  在航的机动船、船队、工程船、海巡艇、航标艇、危险货船应按下列要求显示船舶号灯。  一、 在航的机动船  除另有规定外,机动船单船在航时,应当显示白光桅灯一盏,红绿光舷灯各一盏,白光尾灯一盏。船舶长度为50米以上的机动船,还应当在后桅显示另一盏白光桅灯;除快艇船外,船舶长度小于12米的机动船,条件不具备时,可以显示白光环照灯一盏和红、绿并合灯一盏,也可以显示红白绿光三色灯一盏,以代替上述规定的号灯。下列船舶在航时,除显示前面规定的号灯外,还应当:  1、快速船白天和夜间均显示黄闪光灯一盏。  2、限于吃水的海船夜间显示红光环照灯三盏,白天悬挂圆柱形号型一个。  3、横江渡轮夜间在桅杆的横衍两端显示绿光环照灯各一盏,白天在桅杆横衍的一侧悬挂双箭头号型一个。  二、在航的船队  1、拖轮除显示舷灯,尾灯外,还应当按拖带形式显示;  (1)吊拖或者吊拖右灯推船舶时,显示白光桅灯两盏。  (2)顶推船舶、排筏时,显示白光桅灯三盏。拖轮显示上述号灯有困难时,可以改在船队中最适宜的船舶上显示。  (3)吊拖排筏时,显示自、绿、白光桅灯各一盏。  (4)吊拖船舶、排筏的拖轮,为便于被吊拖船舶或者排筏操舵,也可以在烟囱或者桅的后面,高于尾灯的位置显示另一盏白光灯,但灯光不得在正横以前显露。  2、被吊拖、顶推的船舶或者排筏在航时,应当显示下列号灯  (1)被吊拖、顶推的船舶应当显示红、绿光舷灯。被编组为多排数列式队形时,应当在最左边的一列船舶只显示红光舷灯,在最右边的一列船舶只显示绿光舷灯。顶推船队中最前一艘船的船首,应当显示自光船首灯一盏,其灯光不得在正横后显露。被顶推船的船尾超过拖轮船首时,还应当显示白光尾灯。吊拖船队最后一排船应当显示白光尾灯。  (2)船舶长度为满30米的船舶被吊拖为单排一列式时,每艘船可以显示白光环照灯一盏以代替红、绿光舷灯。  (3)人力船、帆船、物体在被吊拖、顶推时,应当显示白光环照灯一盏,被顶推时灯光不得在正横后显露。当编组为多排数列式时,则在左、右最外一列显示。  (4)排筏被吊拖时,应当在排筏四角高出排面至少一米处显示白光灯一盏;被顶推时,在排首两角高出排面至少一米处显示白光灯各一盏,其他灯光不得在正横后显露。  三、 工程船  工程船未进入工地或者已撤出工地时,应当显示一般船舶规定的信号。进入工地时,应当显示下列号灯、号型;  1、工程船在工地其位置固定时,夜间显示环照灯三盏,其连线构成尖端向上的等边三角形,三角形顶端为红光环照灯,底边两端,通航的一侧为白光环照灯,不通航的一侧为红光环照灯。白天在桅杆横行两端各悬挂号型一个,通航的一侧为圆球,不通航的一侧为十字号型。  2、自航工程船在航施工时,除显示机动船在航号灯外。夜间显示红、白、红光环照灯一盏,白天悬挂圆环、菱形、圆球号型各一个,被拖轮拖带的工程船在航施工时,除按第二十九条规定显示号灯外,还应当显示与自航船在航施工时相同的号灯、号型。  2、工程船所伸出的排泥管,应当在管头和管尾并每隔50米距离,显示白光环照  灯一盏。船舶有潜水员在水下作业时,夜间应当显示红光环照一盏,白天悬挂“A”字信号旗一面。  四、 海巡艇和航标艇  海巡艇执行公务时,夜间应当显示舷灯、尾灯和红闪光旋转灯一盏。航标艇在航时,夜间应当显示舷灯、尾灯和绿光环照灯两盏;停泊时显示绿光环照灯两盏。  五、 危险运输船  装运易爆、易燃、剧毒、放射性危险货物的船舶在停泊、装卸及航行中,除显示为一般船舶的信号外,夜间还应当在桅杆的横衍处显示红光环照灯一盏,白天悬挂“B”字信号旗一面。  同时,彭高工强调,船员应对船舶航行灯应定期进行检查,检查方法有:  1、航行灯、信号灯的设置应符合规定  2、航行灯控制箱由两路电源供电。其中一路必须由主配电板或应急配电板供电,两路电源转换开关应设在控制箱上。  3、主电源采用蓄电池时,可只设一路电源。  4、航行灯控制箱应设有每只航行灯发出故障的声光报警信号装置。对小型船舶、航行灯、信号灯由同一只控制箱控制时,允许只设光报警信号。  5、每只航行灯(在控制箱上)应设有单独的控制开关、熔断器和开闭指示装置,并应设有铭牌或标志。  6、信号灯由设在驾驶室的信号灯控制箱进行集中控制和保护。

3. 船舶T型材角钢

角钢俗称角铁、是两边互相垂直成角形的长条钢材。而国标角钢就是下差能够保证在国标0.25之间即为国标,角钢同样有等边角钢和不等边角钢之分。等边角钢的 两个边宽相等。其规格以边宽×边宽×边厚的毫米数表示。如“∠30×30×3”,即表示边宽为 30毫米、边厚为3毫米的等边角钢。也可用型号表示,型号是边宽的厘米数,如∠3#。型号不表示同一型号中不同边厚的尺寸,因而在合同等单据上将角钢的边宽、边厚尺寸填写齐全,避免单独用型号表示。热轧等边角钢的规格为2#-20#。

  角钢可按结构的不同需要组成各种不同的受力构件,也可作构件之间的连接件。广泛地用于各种建筑结构和工程结构,如房梁、桥梁、输电塔、起重运输机械、船舶、工业炉、反应塔、容器架以及仓 库货架等。

  角钢属建造用碳素结构钢,是简单断面的型钢钢材,主要用于金属构件及厂房的框架等。在使用中要求有较好的可焊性、塑性变形性能及一定的机械强度。生产角钢的原料钢坯为低碳方钢坯,成品角钢为热轧成形、正火或热轧状态交货。

4. 船舶T型材选用指南

分为结构钢,工具钢,特殊性能的钢三大类。

(1)结构钢:按照其不同用途又可分为:

建造用钢——如用来建造格栅钢结构、船舶、厂房结构及其它建筑用的各种型钢以及普通用钢。机械制造用钢——主要用于制造机器或其它机械零件用钢。这类钢中,对含碳量0.1%-0.3%的并需经表面渗碳处理后可使用的钢,称渗碳钢。对于含碳量在0.3%-0.6%的并需经淬火及回火处理后使用的钢称为调质钢。

(2)工具钢:工具钢是用以制造各种工具用的高碳钢与中碳优质钢,包括碳素工具钢。合金工具钢和高速工具用钢等。工具钢还可以按其具体的用途分为:刀具用钢、量具用钢、模具用钢等。

(3)特殊性能的钢:是具有特殊物理和化学性能钢的总称。包括不诱耐酸钢、耐热不起皮钢、电热合金、磁性材料等

5. 船舶T型材过渡

铝合金型材是以铝为基础材料而加工,主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等;通过轧制、挤出、铸造等工艺制成的具有一定几何形状的物体。 建筑装饰用铝合金型材可分为铝合金门窗型材和铝合金幕墙型材两类,而工业用铝合金型材是指除建筑用铝合金型材之外的所有工业上应用的铝合金型材,包括轨道车辆结构用铝合金型材,航空航天用铝合金型材和船舶用铝金型材等。

6. 船舶t型材制作工装

非常好。公司主要产品包括立式加工中心、卧式加工中心、龙门加工中心、五轴加工中心、数控车床等5大系列,30余种机加工设备,范围涉及汽车零部件、航空航天、船舶制造、电力设备、工程机械、高铁、家电等,几乎囊括了全部金属加工生产行业。

另外还提供机床上下料机器人、机床工装夹具、周边自动化物流设备.机器人集成系统等自动化项目的设计和制造。

7. 船舶t型材削斜过渡

6系铝材加工易变形

一是合金的含量不同。5系列属于较常用的合金铝系列,主要元素为镁,含镁量在3-5%之间。又可以称为铝镁合金。6系铝型材是以Mg、Si主要合金元素的变形铝合金,即Al-Mg-Si。

二是热处理不同。5系不可以热处理,6系是可以热处理的。

三是特点不同。5系主要特点为密度低,抗拉强度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列.故常用在航空、船舶方面,在常规工业中应用也较为广泛。6系铝材的特点是:中等强度,具有良好的塑性和优良的耐蚀性。特别是无应力腐蚀开裂倾向,其焊接性优良,耐蚀性及冷加工性好,是一种使用范围广、很有前途的合金

8. 船舶T型材制作辅助工具

船体部位:船体由甲板、侧板、底板、龙骨、旁龙骨、龙筋、肋骨、船首柱、船尾柱等构件组成。

船或船舶,指的是:举凡利用水的浮力,依靠人力、风帆、发动机等动力,牵、拉、推、划、或推动螺旋桨、高压喷嘴,使能在水上移动的交通运输手段。另外,民用船通常称为船、船舶、轮机、舫,军用船称为舰、舰艇,小型船称为艇、 舢舨、筏或舟,其总称为舰艇或船舶。

船舶动力设备

船舶必须配置一整套符合规范要求的动力装置和辅助设备后,才能在水上航行。这些动力装置包括有船舶主动力装置、辅助动力装置、蒸汽锅炉、制冷和空调装置、压缩空气装置、船用泵和管路系统、造水装置和自动化系统等。这此机电动力设备主要集中于机舱,专门管理这些设备的技术部门是轮机部。

1、主动力装置

船舶主动力装置又称"主机",它是船舶的心脏,是船舶动力设备中最重要的部分,主要包括:

(1)船舶主机

能够产生船舶推进动力的发动机的一种俗称,包括为主机服务的各种泵和换热器、管系等。目前商船的主机是以船舶柴油机为主,其次是汽轮机。

(2)传动装置

把主机的功率传递给推进器的设备,除了传递动力,同时还可起减速、减震作用,小船还可利用传动设备来改换推进器的旋转方向。传动设备因主机型式不同而略有差异,总的来说由减速器、离合器、偶合器、联轴器、推力轴承和船舶轴等组成。

(3)轴系和推进器

船舶推进器中以螺旋桨应用最为广泛,大多采用固定螺距或可调螺距的螺旋桨推进器;船舶轴系是将主机发出的功率传递给螺旋桨的装置。船舶主机通过传动装置和轴系带动螺旋桨旋转产生推力,克服船体阻力使船舶前进或后退。

2、辅助动力装置

船舶辅助动力装置又称"辅机",是指船上的发电机,它为船舶在正常情况和应急情况提供电能。由发动机组、配电盘等机电设备构成了船舶电站。

9. 船舶T型材腹板窄10个有问题吗

、荷载引起的裂缝

桥梁混凝土在常规静、动荷载作用下产生的裂缝称荷载裂缝,裂缝产生的原因有:

(1)设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够;结构设计时不考虑施工的可能性;设计图纸交代不清等。

(2)施工阶段,不加限制地堆放施工机具、材料;不了解预制结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式等。

(3)使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。

2、温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化而导致裂缝产生的主要因素有:

(1)年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可采取桥面伸缩缝、支座位移或设置柔性墩等构造措施,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。

(2)日照。桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。

(3)骤然降温。突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度,从而导致产生温度裂缝。日照和骤然降温是导致结构温度裂缝的最常见原因。

(4)水化热。出现在施工过程中,大体积混凝土浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥用量,降低骨料入模温度,减小内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热。

(5)蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。这种裂缝的产生在北方地区比较常见,在冬季混凝土施工中要尽量注意避免。

3、收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和干缩是发生混凝土体积变形的主要原因。

塑性收缩——发生在施工过程中、混凝土浇筑后4~5h,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因为此时混凝土尚未硬化,所以称为塑性收缩。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

干缩——混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为干缩。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是干缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。研究表明,影响混凝土收缩裂缝的主要因素有:

(1)水泥品种、强度等级及用量。水泥品种、强度等级及用量将直接影响到混凝土的收缩大小。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

(2)骨料品种。骨料的吸水性、含水量和粒径大小直接影响混凝土的收缩大小。

(3)水灰比。用水量越大,水灰比越高,混凝土收缩越大。

(4)外加剂。外加剂保水性越好,则混凝土收缩越小。

(5)养护方法。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温相对较低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。

(6)外界环境。大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。

(7)振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。

对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。构造上配筋宜优先采用小直径钢筋(8~14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3,%一般可采用0.3%%~0.5。

4、基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:

(1)地质勘察精度不够、试验资料不准。没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。转

(2)地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。

(3)结构荷载差异太大。在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。

(4)结构基础类型差别大。同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。

(5)分期建造的基础。在原有桥梁基础附近新建桥梁时,如分期修建的高速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。

(6)地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,则冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。

(7)桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。

(8)桥梁建成以后,原有地基条件变化。大多数天然地基和人工地基浸水后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加,基础受荷加大。有些桥梁基础埋置过浅,受洪水冲刷、淘挖,基础可能位移。地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、砂石等,桥址范围土层可能受压缩再次变形。因此,使用期间原有地基条件变化均可能造成不均匀沉降。对于拱桥等产生水平推力的结构物,对地质情况掌握不够、设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。

5、钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀碳化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物体积比原来增长较大,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

6、冻胀引起的裂缝

大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78℃以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,导致裂缝出现。尤其是混凝土初凝时受冻最严重,混凝土强度损失可达30%~50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在冬期条件下硬化。

7、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

7.1水泥

(1)水泥安定性不合格,水泥中游离的氧化钙含量超标。游离氧化钙是熟料中的有害成分,在凝结过程中水化速度很慢,在硬化水泥中继续与水作用,生成氢氧化钙晶体,体积增大近1倍,产生体积膨胀,可破坏已硬化的水泥石,使混凝土抗拉强度下降。

(2)水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。

(3)当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。

7.2砂、石骨料

砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。

砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。砂石中水溶性硫酸盐及硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍,也可导致硬化混凝土的开裂。

7.3拌和水及外加剂

拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能导致碱骨料反应的发生。

8、施工工艺质量引起的裂缝

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深层的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:

(1)混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

(2)混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的产生。转

(3)混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,即塑性收缩裂缝。

(4)混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。

(5)混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

(6)用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

(7)混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。

(8)混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。

(9)施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。

(10)施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。

(11)施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。

(12)装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。

(13)安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。

(14)施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,

Baidu
map