江南官网app 为船舶与海洋工程行业提供技术支持与动力,是船舶行业最大门户分类网站
全国: | 上海:
水上物流产品分类
主页 > 电气自动 > 内河船舶艏侧推(船用艏侧推)
内河船舶艏侧推(船用艏侧推)
来源:www.ascsdubai.com    时间:2022-11-30 19:40    点击:188   编辑:admin

1. 船用艏侧推

郑和宝船和宝船

  郑和宝船是郑和船队中最大的海船,是郑和船队中的主体,也是郑和率领的海上特混舰队的旗舰,它在郑和船队中的地位相当于现代海军中的旗舰、主力舰。

  郑和宝船是供郑和船队的指挥人员、使团人员及外国使节乘座。同时,用它来装运宝物,有明朝皇帝赏赐给西洋各国的礼品、物品,也有西洋各国进贡明朝皇帝的贡品、珍品,还有郑和船队在海外通过贸易交换得来的物品。为此,称为“宝船”,意为“运宝之船”。

  另有一种说法,郑和宝船是郑和下西洋船队中海船的总称,郑和船队是由多种不同船型、不同尺度、不同用途的海船组成,它们统称为郑和宝船。

  据《明史·郑和传》记载,郑和航海宝船共63艘,最大的长四十四丈四尺,宽十八丈,是当时世界上最大的海船,折合现今长度为151.18米,宽61.6米。船有四层,船上9桅可挂12张帆,锚重有几千斤,要动用二百人才能启航。郑和宝船是一种大型海船,尺度大。有关郑和宝船尺度,在《明史·郑和传》中记载得很明白:“造大舶,修四十四者六十二”。在明代人编写的《国榷》中称“宝船六十三艘,大者长四十四丈,阔一十八丈”。在明末罗懋登所著《西洋记》中详细地记载了郑和船队中各种船型的尺度,其中,宝船“长四十四丈,阔一十八丈。” [编辑本段]郑和宝船的尺度和结构   郑和宝船的桅帆总体设计上采用纵帆型布局、硬帆式结构,帆篷面上带着撑条相当于筋的加固作用。二千料船的远洋船型上采取“底尖上阔”的结构,船头昂船尾高。

  船体结构上设了多道横舱壁,把一整个舱按功能分割成多个小舱,多的二十八舱,少的也有二十三舱,这不仅有加强结构和分舱水密抗沉的作用,使船舶有可能向大型化发展,而且还有利于分割舱段分类载货,满足不同功能的使用要求。

  二千料海船采用全木结构。明代船舶工艺发展到有锹钉、铁锔、铲钉、蚂蟥钉等,使复杂的木结构可以轻而易举地通过各种船钉拼合、挂锔、加固在一起,不至于“散架”。上二千料郑和宝船基本船型为福船,外形为小方首,宽平艉。建筑形式属于楼船,主甲板中部有一层甲板室形成舯(意:中)楼,设了舷墙,艉(意:尾,记者注)部有三层艉楼,艏(意:首)部有二层通透性的艏楼。自底舱到甲板上,共分为五层。

  船艏正面有威武的虎头浮雕,两舷侧前部有庄严的飞龙浮雕或彩绘,后部有凤凰彩绘,艉部板上方绘有展翅欲飞的大鹏鸟。 [编辑本段]那么大的船是用什么控制的?   郑和造那么大的船是用什么控制船的?

  史书记载,郑和宝船“长四十四丈,宽十八丈者六十二”。依据这一尺度,郑和宝船将长达135米,排水量近2万吨,甲板面积约相当于一个足球场大小。可以说郑和的船队是当时海上无可争议的巨无霸。如此庞大的船队显示了明代中国惊世骇俗的造船水平。

  原海军装备技术部部长郑明少将是中国郑和下西洋研究会副理事长,潜心研究郑和宝船多年。目前正积极准备郑和宝船的复制工作。他向竞报记者独家披露了当时世界最先进的郑和宝船的技术秘密。

  郑少将表示,虽然史书记载的大号宝船据推算排水量近2万吨,但实际伴随郑和七次下西洋的主要船型是“长61.2米,宽13.8米,排水量1000余吨”的“二千料宝船”。这种宝船拥有在当时极为先进的工艺水平。

  动力推进系统:硬帆+旋转橹

  木帆船在海上的行动主要依靠风帆借助风力以及水手划水。在动力推进系统的这两个重要的环节郑和宝船都采用了独特的设计。首先,与当时欧洲帆船采用的分段软帆不同,郑和宝船使用了硬帆结构,帆篷面带有撑条。这种帆虽然较重升起费力,但却拥有极高的受风效率,使船速提高。并且桅杆不设固定横桁,适应海上风云突变,调戗转脚灵活,能有效利用多面来风。 与船桨不同,郑和宝船在两舷和艉部,设有长橹。这种长橹入水深,多人摇摆,橹在水下半旋转的动作类似今天的螺旋桨,推进效率较高。在无风的时候也可以保持相当航速,而且橹在船外的涉水面积小,适应在狭窄港湾拥挤水域航行。

  船形结构:底尖上阔、首昂艉高+横舱壁 船形影响船速和船体的平稳。郑和宝船采用的是底尖上阔,首昂艉高的船形。郑明说,这种船形在恶劣海面控制平稳的性能较高,而且当时在船的底舱压载了土石,稳定性可以说在当时首屈一指。为了进一步提高稳定性,郑和宝船还使用了梗水木和两舷披水板。这种面向船舷方向的木板可以进一步减小船体向两侧晃动的幅度。郑明告诉记者,研究发现,郑和宝船还根据不同船型和航区在船的主尺度比例设计上也有所不同,以兼顾快速性和稳定性。大抵运输船更强调平稳,而兵船更强调速度。郑和宝船的船体结构还有一个当时独一无二的设计就是设有多道横舱壁。用木板将船内隔成不同船舱,并且彼此密封。这样不仅加强了船的结构,而且具有分舱水密抗沉作用。这种设计还有利于分类载货。例如茶叶、丝绸、各国进贡宝物都可以分开存放。

  船用装置:开孔舵与巨锚

  船在海面航行主要靠船舵控制方向。郑和宝船的船舵采用可以升降式,可以根据需要调整舵叶入水深度。船在深水区航行,遇到大风浪或者乱流的时候,将舵叶下缘降到船底以下,可以使舵不受影响;而在浅水区航行或者锚泊时候则可将舵提升到高位,不致搁浅损伤舵叶。而且郑和宝船的船舵是平衡舵。这是继承宋代的发明,操控比较轻便,而明代又进一步发明了开孔舵,既能够保持舵效,又使得操舵更加轻便。

  在郑和宝船上,带爪木杆石锭(锚)与带横棒多爪铁锚等,普遍用在海船上,还制作了特大型铁锚,这在世界造船历史上都是领先的。

  郑明介绍说,早在汉代,中华木帆船建造工艺就使用榫接铁钉综合技术。明代船舶工艺发展有锹钉、铁锔、铲钉、蚂蟥钉等使较复杂的木结构可以通过各种船钉拼合、挂锔上卡加固,从而使中华古木帆船的尺度、吨位、性能都达到世界领先水平。 [编辑本段]郑和宝船的五大疑问   郑和下西洋的漫漫之旅给后辈们留下许多未解之谜。传说中的大号宝船究竟长得什么样?这样的 “海上巨无霸”(长138米,宽56米)是怎样制造出来的,它又是如何航行的?原海军装备技术部部长、海军工程大学教授郑明为记者剖析了有关郑和宝船的五大疑问。

  疑问一:大号宝船是否存在?

  据史料记载,在郑和下西洋的船队中,最大的宝船长44丈4 尺,宽18丈,载重量800吨。它的铁舵,需要二三百人才能举动。按照今天的测量方法来看,这艘宝船长将近138米,宽56米。一些学者认为如此巨型的木帆船在中国明代不可能出现。另外,有专家认为,明永乐年间,朱棣施政办公的大殿———奉天殿(太和殿),是当时最大的木结构实体。其大小也不过宽 63.96米,深37.20米,高35.05米。而大号宝船上仅船楼的面积就大大超过了它,从封建的宗法礼仪上讲,作为宦官的郑和乘坐似乎有僭越之嫌。

  实际上在中国古代,宫殿的营造法式是有严格的等级界限,而舰船则被视为海上的移动城池,属于军事设施的一种,两者并不具备可比性。

  对此,原海军装备技术部部长、北京郑和下西洋学会副理事长郑明认为,大号宝船是存在的,但没有出海。郑明认为,大号宝船并不是一种实用的船只,它不应该是下西洋船队中的一员。那么大号宝船存在的意义在哪里呢?他推测,大号宝船不被郑和使用,但作为皇帝御用的可能性很大。

  疑问二:大号宝船有多大?

  学术界对大号宝船“长44丈4尺,阔18丈”的尺度仍存质疑。有学者认为,郑和宝船的长宽比例不协调。“长44丈4尺,阔18丈”,长宽比大致为 2.4666∶1,比例之小使“宝船”看上去简直就是一个方盒子,现存的中外船舶绝没有腰身如此之“粗”的,这也使人对宝船的形状产生怀疑。

  根据史料《南船纪》(明·南京工部营缮司主事沈棨著)、《三宝太监下西洋记》(明·罗懋登著)记载以及泉州等地出土的船体实物来看,中国古代海军舰船的长宽比在2.5~2.8之间,多属于宽短型。

  宝船究竟有多大?这还有赖于实物考证。南京中保村明代宝船厂遗址是目前国内已知唯一的明代官办造船基地遗址。1957年,有村民曾在南京宝船厂遗址发掘出一根长11.07米的舵杆;1965年,又在遗址地捞出了一段长2.21米的绞关木,据专家考证,两米多长的绞关木,需要五六个人一起操作,能够绞起 500公斤左右重的铁锚。2003年到2004年间,物馆在对中保村明代宝船厂遗址第六作塘考古发掘时,又发现两根长度分别为10.1米和11米的木舵杆。但这些尚不足以精确推算出造船厂船只的准确规模,只能印证史料记载的明代海船的巨大规模。

  具体尺寸按照英国学者米尔斯推算,宝船排水量3100吨,可载重2500吨。根据中国学者唐志拔计算(数据载于他的著作《中国舰船史》第七章),宝船排水量应该达到5000~10000吨,而根据1985年集美航专、大连海运学院、武汉水运工程学院合作,按照造船原理和中国式木帆船营造法式将宝船复原后,核算最大好宝船满载排水量约22848吨,取之方型系数0.43,可载重9824吨(见彭德清等编著的《中国航海史》第四章)

2. 船舶艏侧推

船舶艏靠时,先抛艉锚,边靠泊边松锚链,当靠近码头时,停车绞缆绳,靠妥后收紧艉锚锚链。艉靠与艏靠操作正好相反。侧靠是先通过撇缆绳将船艏或船尾的缆绳挂到码头的带缆桩上,通过船舶侧推或拖轮将船艏或船尾顶靠到码头,然后通过绞缆机绞缆绳让船舶稳妥的靠在码头上。并靠就和侧靠相似操作。

3. 船用艏侧推器使用方法现场驾驶台操作视频

衡拓云适航app是一款船舶智能分析手机软件,用户可以在线查看详细的船舶姿态,包括航速、横摇摆、纵摇摆等,

中远海船舶监控app采用先进的视频压缩技术,能够充分的将视频流进行压缩,从而有效的节省卫星带宽资源,实现陆岸对海上船舶的远程高清视频监控。

  与此同时,中远海船舶监控app同样适用于陆地有线、无线宽带网络不稳定的使用场景。支持多种移动终端进行图像采集以及远程观看,让您随时随地的轻松实现远程视频监控!

软件优势

  1、虽然是船舶卫星电话,但拨出仅按陆岸固定电话资费收费;

  2、陆岸也按固定电话资费标准和拨打方式,拨打船上电话;

  3、船上办公电话与船绑定,独立计费;

  4、船员电话可随船漫游,费用自理。

  视频监控

  采用先进的视频技术,能够传输实时视频画面,满足用户视频查看船舶状况。

  船舶管理

  为船东和船公司提供精细化船舶管理工具。

  船舶定位

  定位船舶位置,一览船舶动态,航速、航向实时展现。

  航行轨迹

  查看船舶历史航行轨迹,绘制带有指向的轨迹路线图,让您随时随地在线查看

  

  海上通信专家制定针对性最强、性价比最高的卫星宽带应用方案

  国内外设备厂商、卫星公司建立联盟发展战略伙伴,为您制定性价比最高的卫星宽带应用方案

  从游艇、执法海警船到大型集装箱、油轮、散装等大型运输船均有应用案例

  强大的卫星宽带应用开发能力不断为您提供价值和创造价值

  几十年为船舶提供通信导航以及十多年的船舶信息化开与发应用服务,开发各种应用满足船公司的需求

  自主开发增值业务服务,提供各种不同业务应用

  国内率先启动VSAT海上卫星宽带通信服务,已有广泛行业应用案例

4. 船用艏侧推PLC报警后怎么复位?

一,PLC 的故障类型。

1,外部设备故障。

外部设备就是指与 PLC工作过程直接联系的各种开关、 传感器、 执行机构、 负载等。 这些设备发生故障,会直接影响 PLC 系统的控制功能。因此,维修 PLC ,首先要分清是外部设备故障,还是 PLC 本身故障。

2,系统故障。

1)系统故障是影响 PLC 系统运行的全局性故障。

2) PLC 系统故障可以分为固定性故障、偶然性故障。

3)故障发生后,可以重新启动使系统恢复正常,则就是偶然性故障。如果重新启动不能恢复, 而是需要更换硬件或软件, 系统才能够恢复正常, 则认为是固定性故障。

3,硬件故障。

PLC 硬件故障主要指 PLC 系统中的模板、电路损坏而造成的故障。

4,软件故障。

PLC 软件故障包含软件错误、操作错误等。 PLC 软件故障一般可以通过 PLC 本身 的自诊断测试功能或者软件来查看、检查。

二,PLC 控制系统故障率情况。

1) CPU 与存储器故障率占 5%。

2) I/O模块故障率占 15%。

3)传感器及开关故障率占 45%。

4)执行器故障率占 30%。

5)接线等其他方面故障率占 5%。

三,PLC 故障频发重点部位。

1)继电器、接触器。

2)阀门、闸板。

3)开关、极限位置、安全保护、现场操作的一些元件或设备。

4) PLC 系统中的子设备。

5)传感器、仪表。

6)电源、地线、信号线的噪声。

四,维修 PLC的基本先后顺序。

1,先动口再动手。

1)维修 PLC 时,不要立即直接动手,而是先询问故障发生前后的情况、故障现 象;

2)如果对生疏的 PLC 维修,应先了解其工作原理。

2,先清洁再维修。

维修 PLC 时,可以打开机子,首先进行清洁 PLC 。

3,PLC检查先外后内。

维修 PLC 时,先检查外部现象与原因,如果外部正常,则然后检查 PLC 内部。

4,先无电判断后通电判断。

首先在没有通电的情况下,先判断熔丝是否损坏、 是否不通电就可以判断出故障点。如果不能够判断出来,则再通电检查 PLC 。

五,PLC 系统维护与故障排除的基本流程。

总体诊断:可以根据总体检查流程图找出故障点的大方向,然后逐渐细化找出具体故障。

1,电源故障诊断。

如果电源灯不亮需要对供电系统以及电源灯本身进行检查。

2,运行故障诊断。

电源正常, 运行指示灯不亮, 则说明系统可能因某种异常原因而终止正常运 行。

3,输入输出故障诊断。

1)输入输出是 PLC 与外部设备进行信息交流的通道;

2)输入输出是否正常工作,除了与输入 /输出单元有关外,还与连接配线、 接线端子,熔断器等元器件状态有关。

六,查找一般的PLC 故障的基本步骤。

PLC 维修时,插好编程器,并将开关拨到 RUN 位置,再根据下列步骤查找:

1)如果 PLC 停止在某些输出被激励的位置、状态(地方),一般是处于中间状 态,则查找引起下一步操作发生的信号,编程器会显示信号的 ON/OFF状态;

2)如果输入信号,将编程器显示的状态与输入模块的 LED 指示作比较,若结果不一致,则说明需要更换输入模块。更换模块前,需要先检查 I/O扩展电缆和相关连接是否正常;

3)如果输入状态与输入模块的 LED 指示一致,则比较发光二极管与输入装置的状态。如果两者不同,则需要测量一下输入模块。如果发现存在问题,则需要更 换 I/O装置、现场接线、电源等。否则,需要更换输入模块;

4)如果信号是线圈,没有输出或输出与线圈的状态不同,则需要用编程器检查 输出的驱动逻辑,并检查程序清单;

5)如果信号是定时器,并停在小于 999.9的非零值上,则需要更换 CPU 模块;

6)如果该信号控制一个计数器,则需要先检查控制复位的逻辑,再检查计数器 信号。然后检查、判断相关组件是否异常,需要更换

5. 船用艏侧推器型号

球鼻艏(bulb bow)亦称“球艏”,船首部水面以下的球状突出部分,是一种用来克服船阻力的结构。其大小和形状与船体相配合可对水的压力起抵消作用,产生的船波较小,并可改善船体附近水流情况,以减小船的阻力。

船在航行时候会产生兴波阻力,船舶航行时使水面产生波浪,在船首和船尾附近各发生一组波系。每组波系包括横波和散波。横波大致垂直于航向,散波同航向斜交,船波起伏的能量由船体供给,消耗了一部分推进船舶的功率。对船来说相当于克服一定的阻力,这种阻力叫兴波阻力

6. 小型船用侧推

没有过时,一是海运仍然是国际贸易最主要的运输方式,随着全球经济复苏,海运量需求将稳步增长,中长期来看船舶工业仍然有较大市场空间;

二是国际海洋环保规则越来越严苛,为船用节能环保装备等带来新需求,也为整船带来一定的更新需求;

三是我国政策对于船舶工业扶持力度依然较大。从内部因素来看,船舶工业供给侧改革、中央企业混合所有制改革等改革红利的释放将有效提高船舶工业发展质量,充分激发企业自身内生动力。

7. 船舶艏侧推结构及工作原理

船舶艏侧推解体捡修,一是在船坞检修,二是调整压侢水使船艏浮起。进行检修。

8. 船用艏侧推报警后怎么复位

主题内容和适用范围

本标准适用于船用导航雷达。

1.1 无线电频率

雷达设备工作的无线电频率在任何时刻均应在国际电信联盟颁发的“无线电规则”所规定的范围内。

2. 目的

雷达设备应能相对于本船的其他水面船舶和障碍物、浮标、海岸线以及导航标志的位置,这将有助于导航和避碰。设备的安装应满足该设备所规定的性能标准。3. 性能要求

所有雷达设备均应满足下述最低要求。

3.1 作用距离

在正常传播条件下,当雷达天线架设在海面以上15米高度时,在无杂波的情况下,设备应清楚地显示出:

3.1.1 海岸线

高度为60米的陆地,距离为20海里。

高度为6米的陆地,距离为7海里。

3.1.2 水面目标

对5000吨(总吨,下同)的船舶,不管其首向如何,距离为7海里。

对10米长的小船,距离为3海里。

对有效反射面积约10平方米的导航浮标之类的目标,距离为2海里。

3.2 显示

3.2.1 雷达设备应提供首向向上非稳定相对平面位置显示,在没有外部放大装置的情况下,其有效显示直径不小于下列规定:

3.2.1.1 500 吨到1600 吨以下的船舶为180毫米;

3.2.1.2 1600 吨到10000 吨以下的船舶为250毫米;

3.2.1.3 10000 吨和10000 吨以上的船舶,一台雷达的显示器为340毫米,另一台雷达的显示器为250毫米。

3.2.1.4 若放大后的显示精度在本标准的精度范围内,也可以使用光学放大装置。

3.2.1.5 与雷达导航或避碰无关的任何信息只允许显示在屏幕有效直径的外面。

3.2.2 设备应供应下列两组显示量程中的任一组:

3.2.2.1 1.5、3、6、12、24海里以及一档不小于0.5海里且不大于0.8海里的量程组;

3.2.2.2 1、2、4、8、16、32海里的量程组。

3.2.3 设备还可以提供其他量程。

3.2.3.1 所提供的其他量程应比第3.3.2条所要求的最小量程更小,或者比第3.3.2条所要求的最大量程更大。

3.2.3.2 不应提供扫描起点延迟的量程。

3.2.4 设备在任何时刻都要清楚地指示所用的量程及两距标环的间距。

3.3 距离测量

距离测量指确定某目标到雷达天线的距离。

3.3.1 设备应提供测量距离用的下列固定电子距离环:

3.3.1.1 当设备按第3.2.2.1条的规定提供量程时,在0.5到0.8海里之间的量程上至少应有2个距标环,在其他量程上应有6个距标环;

3.3.1.2 当设备按3.2.2.2条的规定提供量程时,在每一量程上应有4个距标环。

3.3.1.3 当设备具有偏心扫描装置时,在每一量程上应增加另外的距标环,使距标环能从最大偏心点开始,一直延伸到显示器边缘。在每一量程上,附加距标环的间距应与第3.3.1.1条或第3.3.1.2条所提供距标环的间距相同。

3.3.2 设备应提供带数字式距离读数的活动电子距标。

3.3.2.1 活动距标的变化范围至少应覆盖从0.25海里到最大程度的最大距离。

3.3.3 用固定距标和活动距标测量目标的距离,其误差不超过使用量程的最大距离的1.5%或70米,取其大者。

3.3.4 固定距标和活动距标的亮度可调节,并可调到在显示器上完全消失。

3.3.4.1 固定距标和活动距标的亮度应能单独调节。{ContentPageTag}

3.4 首向指示

3.4.1 首向应在显示器上用一条直线指示,其最大误差不超过±1o。船首线的宽度不大于0.5o。

3.4.1.1 首向应以一根电子扫描线从扫描原点延伸到显示器边缘。

3.4.1.2 船首线至少应有±1o的可调范围,以便在设备安装时调整其精度达到或优于0.5o。

3.4.2 应有关掉船首线的装置。改装置不会停留在“船首线断开”位置上。

3.4.2.1 当船首线有亮度控制时,不应使船首线暗到消失。

3.5 方位测量

3.5.1 应能在显示器上迅速测定任一目标回波的方位。

3.5.2 用方位测定装置测量显示器边缘上的目标回波,其方位测量精度应等于或优于±1o。

3.6 分辨力

3.6.1 在2海里或小于2海里的量程上,在所用量程的50%~100%的区间内,对方位相同的两个相似的小目标,设备能分离地显示出该两目标的距离间隔应不大于50米。

3.6.2 在1.5海里或2海里的量程上,在所用量程的50%~100%的区间内,对距离相同的两个相似的小目标,设备能分离地显示出该两目标的方位间隔应不大于2.5o。

3.7 横摇或纵摇

当船舶横摇或纵摇达±10o时,设备的作用距离仍能满足第2.1条和2.2条的要求。

3.8 扫描

雷达天线应按顺时针方向连续和自动扫过360o方位。转速应不低于12r/分。设备应能在高达100kn的相对风速情况下良好地运 转。

3.8.1 如果确定雷达要与自动雷达绘标仪联用,则在16海里及16海里以下量程时,天线转速应不低于20r/分。

3.9 方位稳定

3.9.1 设备应有使显示方位稳定在发送罗经方位上的装置。为此,设备应有罗经输入接口。当罗经转速为2r/分时,对发送罗经的复式精度应在0.5o以内。

3.9.1.1 雷达显示器应有首向向上显示方式。当从一种显示方式转换到另一种方式时,时间不超过15秒,精度为0.5o。

3.9.2 当无罗经信号输入时,设备应能以非稳定显示方式正常地工作。

3.10 性能检查

应提供检查装置,当设备工作时能容易地判别其性能是否明显低于安装时达到的校准标准,并能在无目标情况下检查设备的调谐是否正确。

3.10.1 设备性能明显下降是指系统总的性能降低10dB以上。

3.11 抗杂波装置

应提供适当的方法,抑制由海浪杂波、雨雪和其它形式的降水、云以及风沙造成的有害回波。应能手动和连续调节抗杂波控制器。在逆时针到底位置上,抗杂波控制器不起作用。另外,可以配备自动抗杂波控制器,但必须能断开它。

3.11.1 采用小的不连续步进方式调节抗杂波控制器,应认为是连续的调节。另外,如果满足下述条件,则也可采用非旋转式的控制器调节。

3.11.1.1 如果以直线运动方式调节,在移向最左或最下位置时,抗杂波装置应不起作用。

3.11.1.2 如果用一对按钮工作,当按下左边或下面按钮时,抗杂波装置断开。应具有抗杂波控制器工作状态的指示。

3.12 操作

3.12.1 设备应能在显示器所在位置启动和操作。

3.12.2 操作控制器应便于操作者接近,并易于辨认和使用。

3.12.2.1 凡控制器使用符号之处,所用符号应符合GB5465.2“电气设备用图形符号”的规定。

3.12.2.2 为了移动显示器上某些参考标志的位置,例如扫描原点、电子方位线原点、电子方位线与活动距标的交点,可以采用摇杆、滚球或其他相当的控制器。参考点在显示器上的移动方向应与所有控制器动作方向一致。

3.12.3 设备从冷态启动后,应在4分钟内完全正常工作。

3.12.4 设备应具有准备状态,并能在15秒内从准备状态转入工作状态。

3.12.5 如果在强的环境光线下,为便于显示器的观察而需要遮光罩时,应予以考虑罩子的装拆方便。{ContentPageTag}

3.12.5.1 遮光罩应使操作者(可能戴眼睛)在各种环境光线下,能正常地观察显示器的图象。若遮光罩范围内有标绘装置或控制器,则罩上应留有适当的手的进出孔,以便于操作这些装置。当手伸入或离开孔时,进出孔应能自动地调节以挡住孔外的光线进入罩内。

3.13 外磁场干扰

3.13.1 当设备在船上安装和调整好后,无论船舶在地磁场中如何运动,无需进一步调整,设备的方位精度应保持咋本标准所规定的范围内。

3.13.1.1 应充分限制外磁场的影响,以保证设备在船上安装和调整后的方位精度保持不变。

3.14 海面或地面稳定(真运动显示)

3.14.1 如具有海面或地面稳定显示,显示的精度和分辨力至少应达到本标准的要求。

3.14.2 除了在人工干预情况下,扫描原点的连续运动不应超出显示器半径的75%,可以提供自动复位。

3.14.2.1 当扫描原点移动到靠近极限位置时,设备应给出灯光报警,也可以加上音响报警,但不需要时可断开。

3.14.2.2 当采用自动方式复位时,应配以启动复位的手动控制器。

3.14.3 应能使扫描原点按照发送罗经和速度/航程测量装置的输出进行移动。还应有一个设置本船船速的手动控制器,以不大于0.2kn的增量从0起调到30kn以上。

3.14.3.1 扫描原点移动的速度应与速度输入信号相对应,其误差不应超过5%或0.25kn,取其大者。

3.14.3.2 扫描原点移动的方向应与航向输入信号相对应,其误差不应超过3o。

3.14.4 为补偿海流、潮汐及海风的影响,而在设备上动手装手动“流向”和“流速”控制器时,“流向”(海流方向)控制器应以度作为刻度,并且为了正确操作,控制器的调节应与罗经方向一致。“流速”控制器应能以不大于0.2kn的增量,在0到9.9kn以上的变化范围内输入流速数据。

3.15 标绘装置

若设备带有标绘装置时,应提供手动或自动标绘雷达目标的有效手段,所用标绘装置至少应同反射式标绘器一样有效。装了反射式标绘器,应配有单独的标绘器照明亮度调节装置,并可调暗直至熄灭。

3.16 配合雷达信标工作

3.16.1 所有在9GHz(3厘米)频段工作的雷达应能以水平极化方式工作。

3.16.1.1 所有在3GHz(10厘米)或5GHz(6厘米)频段工作的雷达,可以以水平或垂直极化方式工作。

3.16.1.2 可加一装置,使雷达在另一极化方式工作,在这种情况下,设备应能在显示器上转换极化方式。

3.16.2 应能断开可能会妨碍雷达信标显示的那些信号处理装置。

3.16.2.1 雷达的工作应当与符合国际海事组织所建议的相应雷达频段标准的扫频雷达信标相适应。

3.17 中间转换

当安装多台雷达和中间转换装置时,转换装置的设计应做到操作简单、转换迅速。在各种双雷达组合方式工作时,雷达的性能应保持不变。

4 安全措施

4.1 除为了维修可用人工干预装置外,只有在波束扫描时天线才能辐射。

9. 船用艏侧推器使用方法

不可以,侧推在左侧,向右喷的水不是会冲到船体上吗,船体会收到向右的力,侧推跟船体又连在一起,侧推收到的向左的力跟船体受到的向右的力抵消了。通俗一点,就是你双脚离地坐在椅子上是不可能把椅子搬起来的。

事实上侧推器是装在船体中间的,就是在船首(或船尾)横向打一个贯穿的圆洞,用圆筒形的钢板把船体密封好,侧推器装在中间由电机驱动,船需要左转的时候向右喷水,要右转的时候电动机反转,向左喷水就行了。

10. 船用艏侧推效果图

首测推也叫艏侧推,是现代船舶的辅助适航设备,一般存在于吨位大一些的散货船上。它位于船舶的艏部水下,在应急情况下能使船舶迅速调整方向而避免撞船危险。

它由安装于艏部贯穿船身的首测推通道中的螺旋桨和带动螺旋桨的动力单元以及密封设备组成。侧推的螺旋桨在动力的作用下产生的推力垂直于船身,从而能使船舶的首部快速做出方向调整的反应。有了首测推船舶的性能将更加完善,可操纵性更加优良。

Baidu
map